
Lessons we should have learned from SDSS, HSC, and
LSST

Robert Lupton

LSST Pipeline ScienƟst

2016-10-18

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 1 / 23



SDSS and Hipparcos
This talk started out with a conversaƟon with Michael Perryman (then P.I. of GAIA)
about Hipparcos and SDSS.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 2 / 23



Lessons I Learnt from the SDSS

Lesson 1: You need a Project Manager
Lesson 2: Don't join under-funded projects
Lesson 3: Don't generate an inverted management structure
Lesson 4: Learn when, what, and how to review
Lesson 5: PracƟce good soŌware engineering
Lesson 5b: Don't Write Your Main Program in C
Lesson 6: Distribute Data and InformaƟon Freely
Lesson 7: Strive to ensure that the soŌware takes full advantage of the
hardware, even at the beginning of a project
Lesson 8: Treat neither science nor soŌware as a democracy
Lesson 9: Avoid single points of failure
Lesson 10: Find some way to reward people working on the project

I first wrote these lessons down in 2002; what have we learned in the last 14 years?
Some of these are obvious, but were nevertheless ignored by the SDSS project.
Many are being ignored by HSC and LSST too.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 3 / 23



Disclaimer
The advice in this talk comes from a PCA analysis of my involvement in

SDSS
PanSTARRS
ACT
HSC
LSST
Euclid
PFS
WFIRST

Any resemblance to actual projects, living or dead, or actual events is largely
coincidental.

No animals were harmed in the wriƟng of this talk.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 4 / 23



First the good news
Some of us have learned a lot about soŌware engineering:

C++
python

git

jUnit

Jenkins, travis, ...
JIRA / github issues
docker, conda, ...

Actually SDSS didn't do too badly. We used C, TCL and cvs, with GNATS as a
bugtracker.
Some people who boycoƩ ADASS sƟll haven't seen the light and hack things together
with no thought for tomorrow.

Douglas Adams (The Hitchhiker's Guide to the Galaxy. 1978)
OrbiƟng this at a distance of roughly ninety-two million miles is an uƩerly
insignificant liƩle blue green planet whose ape-descended life forms are so
amazingly primiƟve that they sƟll think fortran is a preƩy neat idea.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 5 / 23



First the goodish news
Some of us have learned a lot about tools for soŌware engineering. What have we
learned about soŌware design and pracƟce?
Quite a lot:

tesƟng
interfaces
reusing packages
community standards
documentaƟon tools
code review

Unfortunately our new-found wisdom someƟmes makes the job of managing
soŌware groups harder; some people love the journey more than the desƟnaƟon,
others are Luddites who don't care about technical debt.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 6 / 23



More good news

Lesson 6: Distribute Data and InformaƟon Freely
Be as open as possible, and make all informaƟon and discussion open to the
enƟre collaboraƟon as soon as pracƟcal.

We wrote a mailing lists manager that archives on the web, and to which anyone in
the collaboraƟon may subscribe. A lisƟng of all papers that are being prepared for
publicaƟon is also on the web.

Make data available to the collaboraƟon (or the world) as soon as possible

The first item's a bit dated, isn't it? But it turns out that just making web-enabled
mailing lists doesn't mean that people use them, and wikis are oŌen write-only, so
this is sƟll good advice. Web bug-trackers took off, though. A newer piece of
technology that's proved very useful is a live chat tool such as slack.
I should have enƟtled this lesson:

Lesson 6: Distribute Data, Code, and InformaƟon Freely

The LSST code is distributed under the GPL; it's at https://github.com/orgs/lsst.
Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 7 / 23

https://github.com/orgs/lsst


How should you manage projects?

Hardware
You design everything including every detail; then you build it. Building the system is
slow and hard.

SoŌware
You design everything including every detail; then you're done. Designing the system
is slow and hard.

How should we manage them?

Hardware
LiƩle of our hardware pushes the state of the art, and once the design is done an
external expert can see if it makes sense. Requirements + reviews work well.

SoŌware
SoŌware is different. At the Ɵme you need to pass your FDR/CD-3 the codes are not
wriƩen. You usually don't know enough to write Ɵght requirements.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 8 / 23



Project Managers

Robert Lupton "Lesson 1: You need a Project Manager"
You need a strong and imparƟal project manager. SDSS is a collaboraƟon of a large
number of insƟtuƟons and we have never managed to take technical decisions
unimpeded by poliƟcs.

H. H. Munro (Reginald at the Theatre. 1904)
"When I was younger, boys of your age used to be nice and innocent.”
"Now we are only nice. One must specialise these days"

I no longer innocently believe that all we need to do is to hire a project manager, as
they mostly come from quite another world. We do need them, of course, but we
need to choose them carefully.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 9 / 23



The problem[s] with project managers
Many project managers come from hardware backgrounds. They are comfortable
wriƟng contracts with requirements for sƟffness and mass and knowing that the
sub-contractor will deliver (and that the milestones mean something).
Strategies that I have witnessed for managing Data Management (DM):

Ignore the problem
Make the scienƟsts responsible for DM
Treat DM as a subcontract; believe what you are told
Appoint a DM Project Manager; believe what you are told

So we have a recursive problem. How do we manage the DM Project Manager? Or,
beƩer, how should we find managers who don't need managing?

This is a fine topic for ADASS, and the problem's not insuperable. Just hard.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 10 / 23



People
Tools don't write programs, people do. Some of our problems are engineering (`How
should we handle mulƟprocessing?'), some are algorithmic (`Please write me a
weak-lensing-quality deblender'), and some are computaƟonal (`I'll give you 10ms
per object to fit a galaxy model'), but most are about working together, making the
best use of our varied skills.

Robert Lupton "Lesson 8: Treat neither science nor soŌware as a
democracy"
Neither Science nor SoŌware can be run as a democracy. Not all parƟcipants are
equal, and it's folly to pretend that they are. This is not to say that the most senior
(or smartest) individual should simply lay down the law.

A piece of good news:

Janel Garvin, Dr. Dobbs Journal (2015-10-01)
So, all told, developers are not the lonely, anƟsocial nerds that they are portrayed to
be, nor are they free-wheeling socialites.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 11 / 23



Roberts' Paradox
Unfortunately I'm naming it not for me, but for Eric Roberts at Stanford who in 2000
wrote a report for the US NaƟonal Academy with the blessing of the ACM. The
paradox is that:

There are unemployed soŌware engineers

There is a shortage of soŌware engineers

The resoluƟon is that the shortage is of the best engineers, not the median:
If the best soŌware developer can do the work of 10, 20, or even 100
run-of-the-mill employees, a single-person company that aƩracts such a
superstar can compete effecƟvely against a much larger enterprise
[…]
In some cases, soŌware developers who fall at the low end of the
producƟvity curve may be essenƟally nonproducƟve or even
counterproducƟve

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 12 / 23

http://cs.stanford.edu/~eroberts/papers/SIGCSE-Inroads/CSEducationAndITWorkforce.pdf


Single point failures

Robert Lupton "Lesson 9: Avoid single points of failure"
OK, so this is totally obvious, but there are subtler aspects:

If one person is allowed to become essenƟal it implies that it's proved
impossible to find someone else who could fill their rôle
In consequence, if they are on the criƟcal path, and problems arise, it's hard to
add resources to solve the problem.
If someone with an essenƟal job isn't very good, then an essenƟal component
of your system isn't going to work very well.

My only update would be:
Hire as many people as you can who have with the ability to become single points of
failure; then try to manage the project so that they don't.

Robert's Corollary
Roberts' paradox implies that we'll almost always have single points of failure

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 13 / 23



What is the problem managing soŌware?

The fluidity which is the blessing and curse of soŌware
The large dynamic range in programmers' talents
The large diversity in programmers' talents
The wide range of topics included in `Data Management':

▶ Framework design
▶ Pipelines
▶ Algorithm development
▶ Conops
▶ Running data centres
▶ User support

I'm not sure that that's a larger diversity of topics than in building a camera
Programmers have opinions about everything

Developers enjoy arguing about style issues almost as much as they
enjoy arguing about which is the One True Editor. (As if there's any doubt.
It's Emacs.) ScoƩ Meyers, "EffecƟve C++ "

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 14 / 23



Timescales
When I get a problem report

Things are broken due to ndarray's change from int to size_t

I know what to do, and roughly how long it'll take.
When I get a request

Implement storage agnosƟc data access (with a list of requirements that define
the needs)

I can split the problem into its parts and esƟmate the work involved.
When I am asked to

esƟmate colours of faint blended galaxies with errors of less than 5%.
I don't know what to do. I can ask for beƩer (acƟonable?) requirements, but that
doesn't help all that much. I don't know how long it'll take unƟl I have some idea of
how I'll do it -- at best I'll have some idea of who to give it to.
In fact, I was asked

reduce the data from LSST. The requirements are at http://ls.st/srd; the
desired data products are at http://ls.st/dpdd

How should I plan the work?

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 15 / 23

http://ls.st/srd
http://ls.st/dpdd


Why Agile Development is a Good Idea
These problems with soŌware development (especially in the absence of
crystal-clear requirements and use-cases) are not new; it's why Agile methods are
becoming popular in scienƟfic programming.
Agile encourages us to:

Work with the customer on their requirements
Always have something working

and (in pracƟce)
EsƟmate the work involved at the point of implementaƟon

I personally don't think that we have any choice but to adopt and tame Agile.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 16 / 23



Why Agile Development isn't a Panacea
At a fine-grained level I believe in Agile.
But agility brings problems for the project manager:

How to manage Agile development in a world governed by Earned Value
Management with a 6-month reporƟng cycle? I can use Agile with a 1-month
cycle, but I need to plan 6 of those cycles up front. The top-level requirements
must be met in a few years Ɵme; the flow-down to intermediate requirements
isn't very Agile.
One reason why Agile works well is because it gives the teams power over how
they implement soluƟons. This can cause problems; it assumes that each team
is strong enough to come up with good soluƟons. In pracƟce astronomical
soŌware groups are oŌen run as sets of individuals and this makes things worse;
now everyone has to have good taste.
You might argue that this is because we misuse (or only use in name) Agile
development. I might not disagree.
These problems are all exacerbated for new, geographically-distributed, teams.
Who is the customer? There are many levels and layers of development, serving
different masters i.e. `Hierarchical Agile'.
Different masters mean different customers.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 17 / 23



Who is the Customer?

Customer (OED definiƟon 2a)
A purchaser of goods or services

So that means the funding agencies, acƟng on behalf of the science community.
Who does that mean in pracƟce for a given piece of funcƟonality?

The DM scienƟst?
The Pipeline scienƟst?
The System Architect?
The IntegraƟon Manager?
Or a developer/scienƟst at a different university?

And who decides on the relaƟve importance of infrastructure, algorithms, and
stability? And who prevents feature-creep hidden as `it's scienƟfically essenƟal that
we do XXX'?

Re-enter the Project Manager.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 18 / 23



The Project Manager.
The project manager's primary job is to find a way to manage a large, diverse, project
that they themselves don’t necessarily understand at the beginning.
For big projects this will probably involve

hiring the right subordinates
learning about criƟcal subjects

If we can't or won't find a good PM we're back to needing a Superhero Programmer,
but now one who loves GanƩ charts as well as CRTP and weak lensing.
And has the trust of the overall project manager.

Good Luck!

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 19 / 23



The End

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 20 / 23



Hiring (Bonus slides for submiƩed version)

Robert Lupton "Lesson 10: Find some way to reward people working
on the project"
In SDSS we did this by promising them proprietary data access. Not only is this
impossible for publicly funded projects, but it doesn't really work very well. One
problem is that the promise of data in the distant future doesn't help a post-doc
much; another is that the community (at least in the US) doesn't value work on the
technical aspects of a large project. I don't think that the soluƟon `Hire Professional
Programmers' is viable (although hiring a significant number of competent soŌware
professionals would be a good idea).
<hobbyhorse>My personal belief is that the only long term way out of this is to
integrate instrumentaƟon (hardware and soŌware) into the astronomy career path,
much the way that the high-energy physicists appear to have done (at least from the
outside). </hobbyhorse>

I don't think that much has changed, except that I'm less pessimisƟc about hiring
good programmers.
However, the problem of luring brilliant scienƟsts to work on building the soŌware
remains, although it isn't hard to get them to join the project to do science.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 21 / 23



Training Our Successors

EU IniƟal Training Networks (ITN)
Embarking on a research career is not always easy. And yet today’s young
researchers are vital to Europe’s future. At Marie Curie AcƟons, we are well
aware of that […]
Our [ITNs] offer early-stage researchers the opportunity to improve their
research skills, join established research teams and enhance their career
prospects.

I've been involved in a couple of ITNs, and I think that we can learn from the idea if
not the details.

Teach a series of {Summer,Winter,Spring,Autumn,Candlemas,May
Day,Lammas,All Hallows} schools to an evolving set of students and post-docs
Concentrate on techniques (instruments, soŌware, staƟsƟcs) Ɵed to the science
Get the experts from on and off project involved

AŌer a couple of years, we should have a knowledgeable younger generaƟon, ready
and itching to do science with the next generaƟon of telescopes. My current aƩempt
is the LSST Data Science Fellowship Program; the first workshop was late this summer.

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 22 / 23

http://ciera.northwestern.edu/Education/LSST_Fellowship.php


The End

Robert Lupton (LSST Pipeline ScienƟst) Lessons we should have learned from SDSS, HSC, and LSST 2016-10-18 23 / 23


