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Gravitational Microlensing

e Technique to detect exoplanets and other astrophysical
entities

lensed images
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Current Techniques Limitations

e High rate sampling required to acquire the desired
resolution

e Miniaturized space observatories: Data bandwidth
limitation
e Need high cadence for acquiring each image

e It high cadence is not achieved, an exoplanet transition
with a short period can be missed

e Miniaturized space observatories have power and on-
board memory limitation

e How do we achieve high resolution images at a
high cadence by acquiring only a few samples?
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Compressive Sensing (CS) Motivation

o Acquiring each image pixel individually (sampling at
the Nyquist rate) 1s wasteful when the information can
be encoded in only a select few samples due to its sparse
nature

o Exploit sparsity in images

e Microlensing Events are sparse in spatial domain when

differenced

e That 1s, at any given time only the stars exhibiting a
microlensing event vary 1n flux

e Only those stars are evident when differenced with a
reference 1mage

Astronomical Data Analysis Software and Systems (ADASS)

™~

XXVI Trieste, Italy, October 19th, 2016




CS Theory

(Sub)Measurement

Projection
Original

Ym-l
mth projection = Total Flux = Y

Each sub measurement matrix gets transformed into a 1D signal representing a row
in the measurement matrix.

* M sub measurement matrices
Reconstruct original image, given y vector and the associated (sub) measurement
matrix for each elementiny

* Y - (I)mxn nxl

. Optlmlzatlon (L1 minimization) and greedy algorithms
A unique solution 1s obtained only if the original image 1s sparse in some domain
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Single Lens Microlensing Events

-Source star magnification :

only due to lensing star N

-Magnification at each time N

is dependent on: ’

u,: lens-source separation °

in terms of Einstein’s ring 0

radius : .

t,: peak magnification time é ;

t.: Einstemn’s ring radius il ‘Z __ ‘_
crossing time T

Time

Top: Original spatial domain image at time, t = 0
Astronomical Data Analysis Software and Systems (ADASSBottom: Original time domain image with magnificatiofidl
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All Simulations are performed in Python

Gravitational Microlensing
Parameters

e Single lens event
o U, — 0.1

o Total 30 time samples
o Peak magnification at time
value = 14
e FEinstemn’s ring crossing time at
time value = 29

CS Parameters
Image size = 25x25
* N = 25x25 = 625 pixels
Measurements, M, is varied from
2% of N to 6% of N

M

* % Measurements = t 100
Sparsity: number of non-zero (or
significant value) pixels = 1
Measurement matrix, : Bernoulli
Random with O’s and 1’s

¢ 100 Monte Carlo simulations to

vary measurement matrix cach time
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Error Difference in Average Standard
Reconstruction at t, deviation over all t

4.19 1.6
0.00009 0.52
0.00013 0.00096
0.00013 0.00078
0.00016 0.00073

Change 1n magnification at peak time, t,, 1s 0.5 units of flux

* Resolution error << 0.5 to capture changes in microlensing
curve

4% of N measurements gives optimal error, along with a low
standard deviation, providing lower uncertainty
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Conclusions and Future Work

e lor a clean image, with very low sparsity, only 4% of
Nyquust rate samples are required to reconstruct the
1mage
e Significant reduction in data volume and power
e Greatly benefit space flight observatories

e Future work will include studying
e Point spread functions and 1ts implications for GS
e Dense, crowded field images
e Difference imaging for CS applications
e Binary lens systems
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