

Application of Compressive Sensing to Gravitational Microlensing Data - and -Implications for Miniaturized Space Observatories

Asmita Korde-Patel^{1,2}, Richard K. Barry¹, and Tinoosh Mohsenin² ¹NASA Goddard Space Flight Center, Greenbelt, MD, USA ²University of Maryland, Baltimore County, Baltimore, MD, USA

Outline

- Gravitational Microlensing
- Compressive Sensing (CS) Motivation
- Compressive Sensing (CS) Theory
- Single Lens Microlensing Events
- Simulation Results
- Conclusion and Future work

Gravitational Microlensing

• Technique to detect exoplanets and other astrophysical entities

Credit: Space Telescope Science Institute

Current Techniques Limitations

- High rate sampling required to acquire the desired resolution
 - Miniaturized space observatories: Data bandwidth limitation
- Need high cadence for acquiring each image
 - If high cadence is not achieved, an exoplanet transition with a short period can be missed
- Miniaturized space observatories have power and onboard memory limitation
- How do we achieve high resolution images at a high cadence by acquiring only a few samples?

Compressive Sensing (CS) Motivation

- Acquiring each image pixel individually (sampling at the Nyquist rate) is wasteful when the information can be encoded in only a select few samples due to its sparse nature
- Exploit sparsity in images
- Microlensing Events are sparse in spatial domain when differenced
 - That is, at any given time only the stars exhibiting a microlensing event vary in flux
 - Only those stars are evident when differenced with a reference image

mth projection \rightarrow Total Flux \rightarrow

- Each sub measurement matrix gets transformed into a 1D signal representing a row • in the measurement matrix.
 - M sub measurement matrices
- Reconstruct original image, given y vector and the associated (sub) measurement • matrix for each element in y
 - $Y_{mx1} = \Phi_{mxn} x_{nx1}$
 - Optimization (L1 minimization) and greedy algorithms
- A unique solution is obtained only if the original image is sparse in some domain

Single Lens Microlensing Events

Source star magnification only due to lensing starMagnification at each time is dependent on:

u₀: lens-source separation in terms of Einstein's ring radius

- t₀: peak magnification time
- t_e: Einstein's ring radius crossing time

 Top: Original spatial domain image at time, t = 0

 Astronomical Data Analysis Software and Systems (ADASS

 Bottom: Original time domain image with magnificatio

 7

 XXVI Trieste, Italy, October 19th, 2016

 at center pixel plus a 3 pixel radius

Simulation Setup

All Simulations are performed in **Python**

<u>Gravitational Microlensing</u> <u>Parameters</u>

- Single lens event
- $u_0 = 0.1$
- Total 30 time samples
 - Peak magnification at time value = 14
 - Einstein's ring crossing time at time value = 29

- <u>CS Parameters</u>
- Image size = 25x25
 - N = 25x25 = 625 pixels
- Measurements, M, is varied from 2% of N to 6% of N
 - % Measurements $= \frac{M}{N} \ge 100$
- Sparsity: number of non-zero (or significant value) pixels = 1
- Measurement matrix, : Bernoulli Random with 0's and 1's
 - 100 Monte Carlo simulations to vary measurement matrix each time

CS Reconstruction

% Error at t0 over center pixel with 3 pixel radius

% Measurements = $\frac{\# of \ measurements}{\# of \ total \ pixels} \ge 100$ Green: Original signal Blue: Reconstructed signal Red: Error bars

Top: 2% measurements Middle: 3% measurements Bottom: 4% measurements

Resolution Accuracy

% Measurements [#] / ₈ x 100 2 3 4 5 6	Error Difference in Reconstruction at t ₀ 4.39 0.00009 0.00013 0.00013 0.00016	Average Siterelard deviation over all 1 1.6 0.52 0.00096 0.00175	Error Difference in Reconstruction at t ₀	Average Standard deviation over all t
2			4.19	1.6
3			0.00009	0.52
4			0.00013	0.00096
5			0.00013	0.00078
6			0.00016	0.00073

- Change in magnification at peak time, t_0 , is 0.5 units of flux
 - Resolution error << 0.5 to capture changes in microlensing curve
- **4% of N measurements gives optimal error**, along with a low standard deviation, providing lower uncertainty

- For a clean image, with very low sparsity, only 4% of Nyquist rate samples are required to reconstruct the image
 - Significant reduction in data volume and power
 - Greatly benefit space flight observatories
- Future work will include studying
 - Point spread functions and its implications for CS
 - Dense, crowded field images
 - Difference imaging for CS applications
 - Binary lens systems

Acknowledgement

 The Digital Signal Processing Technology Group, Code 564 Instrument Electronics Development Branch, NASA Goddard Space Flight Center

References

- [1]Y. Eldar and G. Kutyniok, *Compressed sensing*. Cambridge: Cambridge University Press, 2012
- [2]B. O'Donoghue, E. Chu, N. Parikh and S. Boyd, "Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding", *J Optim Theory Appl*, vol. 169, no. 3, pp. 1042-1068, 2016.
- [3]S. Seager and R. Dotson, *Exoplanets*. Tucson: University of Arizona Press, 2010.