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Monitoring & Control Software for the new 

Westerbork Phased-Array Feed System

Message Queues

sd Controller framework

«thread»

RequestHandler

«QPID MB»

External

message-bus

command_queue /

Priority

«thread»

ResponseHandler

command_response_queue

«thread»

ExecutionHandler

receive()

«message»
Command_Factory.

create(message)

put({exec_time, command})

Ack/Nack(message)
get()

«command»

Event/condition.wait(exec_time-now)

put(exec_time, command)

get()

«command»

command.execute()

put(command)

get()

«command»

construct_response_message()

send(constructed_message)

ack()

Monitoring & Control

Controller Framework

System Overview

From a software point-of-view
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Advantages of Message Queuing
• Reliable communication, guaranteed delivery
• Ease of use: simply post a message to an exchange
• Routing is run-time configurable
• Eases loose coupling of system components
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Monitoring & Control

Layered Design

For APERTIF we chose to use AMQP

• Advanced Message Queuing Protocol (AMQP)
• Based on IEEE standard (ISO/IEC 19464)

• Apache Qpid
• Messaging built on AMQP
• C++ and Python bindings
• Also used by LOFAR
• Ubuntu PPA (deb http://ppa.launchpad.net/qpid/released/ubuntu trusty main)

• Wrapped Qpid in C++ library & Python module
• Eases send & receive of messages (“ToBus” and “FromBus”)
• Classes like CommandMessage, EventMessage, NotificationMessage, etc.

Message Routing

• Broker daemon on every host
• Routing configuration tool
• Single exchange: “APERTIF”
• Routing based on subject
• Destination queues for each component

# Routing configuration for APERTIF

#

# Use the tool 'config_routing' to apply this table

[system]

name=APERTIF

[routes]

# APERTIF Routing tables

#

# routingkey destinations

control:      SignalControl.ctl, DirectionControl.ctl

command:      SignalControl.cmd, DirectionControl.cmd

response:     SignalControl.notification, DirectionControl.notification

Controllers
• Handle commands that arrive via the Message Bus
• Serialize access to the Drivers
• High-Level commands

• Are user- or task-oriented
• Are typically sent to the whole system
• Examples: “Start Observation”, or “Calibrate PAF”

• Low-Level commands
• Are subsystem- or driver-oriented
• Are typically sent to one sub-system
• Are often sub-system specific
• Examples: “set_vamp”, “set_vcoax”, “get_status”

Drivers
• Drivers interface with (custom-made) hardware
• Interface definition: wire protocol
• Written in Python

• UniBoard has low-level C++ driver to meet 
performance requirements

Controller Framework handles three main 
tasks any controller must do:
• Reception and execution (at the right 

time) of commands received over the 
message bus

• Guarantee that commands are not mixed 
(executed in sequence)

• Publish a configurable set of status 
information at regular intervals

• RequestHandler
• Listen for new message on the message bus
• Turn messages into command objects
• Put commands in command queue

• ExecutionHandler
• Wait for new commands in command queue
• Handle scheduling and execution of commands
• Put command responses into response queue

• ResponseHandler
• Listen for responses in response queue
• Construct response message
• Send response message to the message bus

Synchronous Asynchronous
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Messages: Request/Reply
Queue name: .rpc
Purpose: User interface to RPCs
E.g. low level commands to the 
controllers, database access, etc.

Communication: Commands (scatter/gather)
Messages: Command/Response
Queue name: .cmd
Purpose: User interface to multiple 
components with asynchronous answer
E.g. high level commands
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t Communication: RPC calls (p2p)
Messages: Request/Reply
Queue name: .rpc
Purpose: Ask about health or 
behaviour of the component
E.g. queries about counters, 
performance, etc.

Communication: Control (p2p)
Messages: Control/Response
Queue name: .ctl
Purpose: Change behaviour of component
E.g. shutdown, start/stop/set Notification 
sending, suspend/resume RPC queue, etc.

sd Message Behav iour Controllers
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Communication with components
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