
ASTRON is part of the Netherlands Organisation for Scientific Research

Author: Marcel Loose (loose@astron.nl)

Monitoring & Control Software for the new

Westerbork Phased-Array Feed System

Message Queues

sd Controller framework

«thread»

RequestHandler

«QPID MB»

External

message-bus

command_queue /

Priority

«thread»

ResponseHandler

command_response_queue

«thread»

ExecutionHandler

receive()

«message»
Command_Factory.

create(message)

put({exec_time, command})

Ack/Nack(message)
get()

«command»

Event/condition.wait(exec_time-now)

put(exec_time, command)

get()

«command»

command.execute()

put(command)

get()

«command»

construct_response_message()

send(constructed_message)

ack()

Monitoring & Control

Controller Framework

System Overview

From a software point-of-view

Behavior of a component Interfaces of a component

Software Components

Message bus

Tasks DP info Meta-data

Task
access

Project
info

DP access MD access
Project
access

Integrated
database

access

MAC
Controllers

(Telescope)
hardware

DMZ

GUI

GUI DB

UI
Signal

processing

External Archive

Archive
handling

Data
products

Advantages of Message Queuing
• Reliable communication, guaranteed delivery
• Ease of use: simply post a message to an exchange
• Routing is run-time configurable
• Eases loose coupling of system components

Hardware

Firmware

Driver

Control

Monitoring

Task Specification

 Schedule observations

Data Taking

 Write raw UV-data

Data Processing

 Calibration & Imaging

Archiving

 Data Quality & Ingest

Monitoring and Control

Monitoring & Control

Layered Design

For APERTIF we chose to use AMQP

• Advanced Message Queuing Protocol (AMQP)
• Based on IEEE standard (ISO/IEC 19464)

• Apache Qpid
• Messaging built on AMQP
• C++ and Python bindings
• Also used by LOFAR
• Ubuntu PPA (deb http://ppa.launchpad.net/qpid/released/ubuntu trusty main)

• Wrapped Qpid in C++ library & Python module
• Eases send & receive of messages (“ToBus” and “FromBus”)
• Classes like CommandMessage, EventMessage, NotificationMessage, etc.

Message Routing

• Broker daemon on every host
• Routing configuration tool
• Single exchange: “APERTIF”
• Routing based on subject
• Destination queues for each component

Routing configuration for APERTIF

#

Use the tool 'config_routing' to apply this table

[system]

name=APERTIF

[routes]

APERTIF Routing tables

#

routingkey destinations

control: SignalControl.ctl, DirectionControl.ctl

command: SignalControl.cmd, DirectionControl.cmd

response: SignalControl.notification, DirectionControl.notification

Controllers
• Handle commands that arrive via the Message Bus
• Serialize access to the Drivers
• High-Level commands

• Are user- or task-oriented
• Are typically sent to the whole system
• Examples: “Start Observation”, or “Calibrate PAF”

• Low-Level commands
• Are subsystem- or driver-oriented
• Are typically sent to one sub-system
• Are often sub-system specific
• Examples: “set_vamp”, “set_vcoax”, “get_status”

Drivers
• Drivers interface with (custom-made) hardware
• Interface definition: wire protocol
• Written in Python

• UniBoard has low-level C++ driver to meet
performance requirements

Controller Framework handles three main
tasks any controller must do:
• Reception and execution (at the right

time) of commands received over the
message bus

• Guarantee that commands are not mixed
(executed in sequence)

• Publish a configurable set of status
information at regular intervals

• RequestHandler
• Listen for new message on the message bus
• Turn messages into command objects
• Put commands in command queue

• ExecutionHandler
• Wait for new commands in command queue
• Handle scheduling and execution of commands
• Put command responses into response queue

• ResponseHandler
• Listen for responses in response queue
• Construct response message
• Send response message to the message bus

Synchronous Asynchronous

F
u

n
c
ti

o
n

a
l Communication: RPC calls (p2p)

Messages: Request/Reply
Queue name: .rpc
Purpose: User interface to RPCs
E.g. low level commands to the
controllers, database access, etc.

Communication: Commands (scatter/gather)
Messages: Command/Response
Queue name: .cmd
Purpose: User interface to multiple
components with asynchronous answer
E.g. high level commands

M
a
n

a
g

e
m

e
n

t Communication: RPC calls (p2p)
Messages: Request/Reply
Queue name: .rpc
Purpose: Ask about health or
behaviour of the component
E.g. queries about counters,
performance, etc.

Communication: Control (p2p)
Messages: Control/Response
Queue name: .ctl
Purpose: Change behaviour of component
E.g. shutdown, start/stop/set Notification
sending, suspend/resume RPC queue, etc.

sd Message Behav iour Controllers

Only on state changes

May be repeated many times

Control

Command in the future

Immediate command

Encapsulated in the RPC/Service classes

ComponentClient

RequestMessage()

do work()

ReplyMessage()

CommandMessage(recipients, t=now)

do work()

ResponseMessage(ack/nack work)

CommandMessage(recipients, t=future)

schedule work()

ResponseMessage(ack/nack scheduling)

do work()

ResponseMessage(ack/nack work)

ControlMessage(recipients, priority)

do work()

ResponseMessage(ack/nack work)

NotificationMessage()

EventMessage(severity)

Communication with components

sd Toplev el v iew

Task specification

ArchivingData ProcessingData Taking

Specification and

Configuration

Observation Schedule Instrument settings

Execution Control

Instrument Control

Data taking

Raw dataproducts

Pipeline Control

Processing pipelines

Intermediate

dataproducts

End product generation

End products

Export

Scientist

Operator

