
To increase the performance, a few tests were made where the ROI Detection algorithm was 
modified to a parallel version where you could process “n” number of fits files at the same time 
using “n” processors. The implementation was made using mpi4py library. 
 
 
 
 

Table 5, Parallelization test on ROI algorithm 
 
 
 
 
 
 

Abstract: Astronomical spectroscopy is a field that has been growing for a number of years, analyzing the features of molecular spectral lines from astronomical data cubes provides insight to the 

composition and dynamics of our universe. With the arrival of state-of-the-art high spectral resolution radiotelescopes like ALMA, the size of the data cubes will be constantly growing in time. This is why 
we believe that some automatic analysis methods will be helpful assisting the astrochemists work. We will generate a method to analyze astronomical data cubes, detect their regions of interest, by 
using a non supervised clustering algorithm, and then, generate a spectrum for each region of interest, and classify the molecular species found in the spectra, by using a supervised training algorithm. 
The training for the learner is done using synthetic spectra, and the validation is done using radio astronomical data cubes from ALMA observational data. A summary of related works is presented, and 
also a  list of the astronomical complexities surrounding the nature of a molecular spectrum. Initial experiments contemplated a naive physical model that was considered to start the problem and two 
popular Machine Learning methods were tested for the task of classifying molecular spectra, Support Vector Machines and Neural Networks; results for SVM resulted in accuracy of over 90 percent with 
the basic model, later, a more complex model provided a slightly lower accuracy due to the lack of proper validation data. The Neural Network approach, provided similar results to the initial SVM 
approach. A parallelization test was also performed, obtaining a speedup of 2x in the process of real world data files. 
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The study of the molecular composition of objects in space has been a matter of extensive 
research since the 1930's (Swings, Rosenfeld, 1937), through the use of Spectroscopy 
techniques. Around 150 molecules have been identified in interstellar or circumstellar 
clouds (Woon, 2015) and the number grows every year. 
 
With the creation of new observatories like the Atacama Large Millimeter / Submillimeter 
Array (ALMA), a new window is being opened to space. Instruments with the sensitivity and 
resolution of ALMA will allow astronomers and astrochemists to further explore spectral 
line rich regions of space. ALMA observes at wavelengths in the range 3 mm to 400 m (84 
to 720 GHz). With the high sensitivity of the observations, information about the chemical 
composition of the observing targets will be in the spectral lines captured by the telescope, 
some of them, for the first time. The analysis process to detect these molecules is quite 
complex and requires effort from astrochemists and laboratory spectroscopists (Cernicharo, 
2012). Finding ways to classify some of the known lines is interesting, specially because in 
larger data cubes, thousands of lines can be present in a single detection, as ALMA can 
deliver up to 7680 frequency channels per data cube.  
Our intention is to contribute with our efforts to the interdisciplinary field of Astro 
Informatics, by taking a computer science approach, namely the use of Datamining and 
Machine Learning algorithms and use them to learn to identify interesting emission regions 
in data cubes, and classify known spectra. Even though the specific process of identify and 
classify an astronomical spectrum is quite complex, we would like to start with a naive 
representation, and add complexity in future iterations. 
The objective for this work is to train two well known machine learning models using 
synthetic data, and use such trained models with some of the ALMA Observational Data 
cubes to classify all of the existing trained molecules in the cube. We also want to include a 
parallelization variant, to make the process of data cubes faster. 

 
 

  
 
 
 
 
 
 
 
 
 

 
•  GILDAS Weeds (Maret, 2015). 
•  CASSIS (Vastel, 2015).  
•  ADMIT (Teuben, 2015). 
•  MyXCLASS (Moller, et. al., 2013).  
•  MADEX (Cernicharo, et,al., 2012). 
•  Source Extractor (Bertin, et. al., 1996). 
•  ClumpFind (Williams, et. al., 1994). 

 
•  Molecular Line Association Analysis (Miranda, 2015). 
•  Detection and classification of spectroscopic lines (Pichara, 2013). 
•  A Machine Learning Application for Classification of Chemical Spectra (Madden, 2009). 
•  Combining Genetic Algorithms, Neural Networks and Wavelet Transforms for Analysis of Raman 

Spectra (Hennesey, 2004). 
•  Indexing data cubes for content-based searches in radio astronomy (Araya, 2016). 
•  Knowledge Discovery in Mega-Spectra Archive (Skoda, 2015). 
 

  
 
 
Having established that there are two interesting problems: 
1.  Detection of regions of interesting emission in Astronomical Data Cubes. 
2.  Manual classification of astrochemical spectra, which can be a complicated task due to several factors 

that affect the characteristics of a spectral line on their way towards us. 
 
 What do we want: 
1. To implement an algorithm that allows us to find out regions with significant energy emission from the 

sources, using clusterization techniques. Try several, choose the best one. 
2. For each region, classify known spectral lines by using one supervised classification Machine Learning 

model. Try several and choose the best one (criteria: Accuracy vs. ease of implementation) 
3. If time allows, try parallelization to make it faster (Optional) 

The problem of classifying astronomical spectra contains many extra variables which make it a more complex problem than to classify laboratory spectra, In this first approach, just one of the physical parameters has been taken into 
consideration (frequency) to classify the different spectra, we are aware that the current implementation is not physically accurate to the “real world” model, however we believe that using Machine Learning on these early stages 
will help to lay a foundation for more complex projects of this kind, our second approach using SVM showed lower accuracy, although this is expected because the higher complexity of the new model required a new training set. We 
expect to develop new approaches that allow us to keep or improve the accuracy of the models, while incorporating more astrochemical concepts into them. The scarcity of real world training examples makes the synthetic data 
useful to attempt further refinements. 
In the parallelization testing, it was possible to develop a parallel python program using mpi4py that is capable to process 8 data cubes of 660 MB in size of dimension 300x300x1920 in 1.917 seconds, 3.87 times faster that its 
sequential counterpart. Applying these principles to an existing program that uses 8 FITS files of different sizes, it was possible to achieve a 2.22x speedup. 

 
 
 
 
 
 
 
 
 
 
 
Method Selection : DBSCAN, Current parameters are: Epsilon : 10% of FITS size. 
MinPts = 7.  Algorithm: Compact data cube into 2D, crop data below 3-Sigma, run 
clusterization. For each cluster, generate spectrum. 
 Pros: Irregular shapes can be detected no prior knowledge of number of clusters is 
required, unlike globular methods like k-means. 
 Cons: Very sensitive to parameter selection, need to find an automatic way to select 
them. Current ROI algorithm only works for high emission. Low emission is lost in 
noise when collapsing cube. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1, Processing of FITS file to detect regions of interest via DBSCAN 
 
 
 
 
 
 
 
 

Implementation (Barrientos, Flores, Gonzalez, 2015): The original approach considered 8 
transitions, with 100 examples per transition, each training example included intensity 
information for 1000 channels where the highest intensity was at the center frequency.  
These models were created using the library Pybrain (Schaul, 2010). A feed-forward network 
with sigmoidal activation functions was used. For the output layer, a softmax function was 
used. For the training phase, backpropagation was used. As a measure of training error, we 
used the default pybrain error - Mean Squared Error - of the output vector in relation to the 
vector of the corresponding class. 
 
 
 
 

Table 1: ANN Models 
 
M1 obtained a validation error close to 0.01% while M2 obtained an error of 0.15%. M3 
obtained the lowest error with under 0.002%. The data was divided 80% for training and 20% 
for testing. For validation, 10% of the training data was used. 
 
 
 
 
 
 
 

Figure 2, 3, 4: Evolution of Errors vs Epoch. 
 
 

 
 
 
 

Table 2: ANN Testing Results 
 
 
 
 
 
 
 
 

Figure 5, CO (3-2) Training Example, modified ADMIT code 

 
 
Implementation (Barrientos, Ferreira, 2015): The SVM approach was implemented using scikit-learn 
(Pedregosa, 2011), libSVM-gpu (Chang et.al. 2011). The workflow follows these steps. 
 
The first test consisted on detecting single transitions as standalone classes, while this approach is 
very naive, it was a good starting point. The classification accuracy is described in table 
 
 

Table 3, SVM Results, First Approach. 
 
The second approach consisted on detecting “all” transitions in ALMA range (84-940 GHz) for a given 
species, to consider classification. In other words, the more transitions existed, the higher the 
probability of classification into that particular species. For classification we tested both One-vs-One 
and One-vs-All approaches, both provided similar results. 
 
 
 

Table 4, SVM Results, Second Approach. 
 
 

 
 
 

Model Name   Description 

M1_100      Model with 1 hidden layer with 100 neurons  

M2_10       Model with 1 hidden layer with 10 neurons 

M3           Model without hidden layer 

Model    Time(min.)   Epochs   Training Error   At Epoch   Test Error   Missclasification Error 

M1_100  328 102 0.005297% 98 0.019398% 0% 

M2_10   36 102 0.122776% 102 0.151988% 0% 

M3       29 102 0.000076% 91 0.003531% 0% 

Threshold 2.5 3 3.5 4 4.5 5 

Accuracy 0.91479 0.93032 0.94032 0.94285 0.94739 0.94505 

Threshold 2 2.5 3 3.5 4 4.5 5 

Accuracy 0.8626 0.8706 0.8784 0.8835 0.8741 0.8887 0.8938 

Files 1 2 3 4 5 6 7 8 

Sequential 6.445 51.828 58.162 64.944 77.369 85.453 170.117 217.807 

Parallel 6.814 44.214 48.7 45.164 51.628 49.964 89.644 97.763 

Speedup 0.946 1.172 1.194 1.438 1.499 1.710 1.898 

Figure 6, Parallelization test results  

  
 
 
There are several astrophysical complexities that surround the problem of line analysis (Tennyson, 2005) 
 
Source Complexities: Inherent to the astronomical source that is being observed and its nearby regions. 
Examples: Temperature, Optical Depth, Abundance, Critical Density, Source Kinematics, Pressure. 
 
Molecular Complexities: Inherent to the molecules in the observed source. Examples : Abundance, Internal 
Structure, Electronic Transitions, Molecular Rotation, Vibrational Rotation, Frequency. 
Other factors:  Line Shape, Literature is not always precise. 


