
Instantaneous
Archives

Walter Landry

Performance is a Feature
• Improving performance increases the

 breadth and depth of research users can do.

• We can never be too fast

How Fast is Fast Enough?
• Human reaction time: 200 ms

How Fast is Fast Enough?
• Human reaction time: 200 ms

• But many of these web interfaces talk to

 machines (IDL scripts, astro.py, TOPCAT, ...)

How Fast is Fast Enough?
• Human reaction time: 200 ms

• But many of these web interfaces talk to

 machines (IDL scripts, astro.py, TOPCAT, ...)

• Network latency to the end user

 • Other side of the world: 1000+ ms

 • Inside the building: 0.3 ms

How Fast is Fast Enough?
• Human reaction time: 200 ms

• But many of these web interfaces talk to

 machines (IDL scripts, astro.py, TOPCAT, ...)

• Network latency to the end user

 • Other side of the world: 1000+ ms

 • Inside the building: 0.3 ms

• You also want to be fast enough so that

 users do not block each other.

Simple Cone Search Traffic

Simple Cone Search Traffic

Simple Cone Search Traffic
• Averaged over a day, the peak rate works

 out to 6 queries/second.

• We have 16 cores on our webserver, so if

 queries take more than about 3 seconds,

 we are going to fall behind.

• Simple Cone Search is our most popular

 service by far.

• Most queries are small (<60 arcsec).

 • Cross-match the old-fashioned way

• The increased traffic is not a one-time

 incident. It is a consequence of making

 our data available through Virtual

 Observatory (VO) protocols (and especially

 TOPCAT).

What to Optimize For?

What to Optimize For?
• So we will be looking at small cone searches

 on the 2MASS All-Sky Point Source Catalog

 • 470 million rows

 • Big enough for realistic benchmarks

 • Small enough to copy around test

 machines.

• Current queries take about 1 second ...🐌

Database Bottleneck?
• We tile the sky with a Hierarchical

 Triangular Mesh (HTM).

• This gives us a number (HTM ID)

 for each part of the sky.

• HTM ID's next to each other tend

 to be close together spatially.

• For good performance, need to

 • Choose the right depth of hierarchy

 • Order the rows by HTM ID

2MASS Query Times Using
a Direct SQL Connection

Alternate Spatial Indexing
• Cube-sphere (q3c)

 • Comparable to HTM for cone searches

 • Maybe faster for cross matches?

Alternate Spatial Indexing
• Cube-sphere (q3c)

 • Comparable to HTM for cone searches

 • Maybe faster for cross matches?

• Healpix (h3c)

 • Slightly faster (10%) than q3c for cone

 searches

Alternate Spatial Indexing
• Cube-sphere (q3c)

 • Comparable to HTM for cone searches

 • Maybe faster for cross matches?

• Healpix (h3c)

 • Slightly faster (10%) than q3c for cone

 searches

 • Pathologically bad for polygons

Alternate Spatial Indexing
• RTree (PostGIS)

 • Handles polygon-polygon intersections

 • Fast enough for relatively small image

 tables (50 million rows)

Architecture

What does 2MASS know about

(210.802, 54.349)?

Architecture

Apache starts a new cgi-bin

process (IVOA) to answer the query

Architecture

IVOA starts another process (Isisql)

and asks for metadata about the

2MASS table

Architecture

Isisql passes

along the query

to Oracle

Architecture

Oracle returns an answer

Architecture

Isisql returns the

metadata to IVOA

Architecture

IVOA sends the

real query to

Isisql

Architecture

Isisql runs the

query and

stores it in a

networked temp

directory

Architecture

Isisql notifies IVOA

that the result is

ready, and IVOA

retrieves it.

Architecture

IVOA converts the

result to the

desired format

(e.g. FITS, VOTable,

HDF5) and

sends it to

Apache

Architecture

Apache sends the

result to the user

What takes Time?
1/3: Starting up processes

What takes Time?
1/3: Starting up processes

2/3: Making new connections to the database

What takes Time?
1/3: Starting up processes

2/3: Making new connections to the database

1/30: Running the user's query

Optimization Strategy
• Instead of using CGI programs with Apache,

 run an embedded, multi-threaded

 webserver to only service VO and other

 API calls.

• This service can then keep a pool of

 database connections.

• Do as much as possible in memory. For

 small cone searches, never write to the

 filesystem.

Choosing an Embedded Webserver
• Our stack is all C++ and C.

• That gives us a few options

Choosing an Embedded Webserver
• Our stack is all C++ and C.

• That gives us a few options too many

POCO
Proxygen

H2O

Boost ASIO
Mongoose

CivetWeb

libmicrohttpd

Simple Web Server libhttpserver

nxweb
Mimosa

Kore

libevent

libapache-mod-raii

Webem

Served
Casablanca

cpp-netlib

node.native Boost.http

Pistache libnghttpd2_asio

Pion

Benchmarking the Webserver
• For each candidate, we wrote a simple

 service that waits 10 seconds and returns

 "Hello World".

• Then we used httperf to make 1024

 concurrent connections.

• httperf -hog --num-conns=1024

 --num-calls=1 --rate=128

 --server localhost --port 8080

Benchmarking Results
• This simple exercise broke a lot of the

 libraries

• Others just did not perform well with the load

• For this and other reasons, we chose

 libhttpserver

 • https://github.com/RipcordSoftware/libhttpserver

 • It is a C++ wrapper around libmicrohttpd,

 which is a well established, fast,

 embedded webserver library.

Connecting to the Database
• Once again, there are many libraries

 for connecting to databases

• Isisql connects to Oracle over ODBC.

• We chose the native Oracle C++ connection

 library (OCCI).

 • Probably the best performance???

 • Has pools built-in.

New Architecture

New Architecture

• No process startup

• All in memory

Response Times
• 1024 Queries

• Randomly distributed throughout the sky

• 5" < Search Radius < 36"

Response Times
• 1024 Queries

• Randomly distributed throughout the sky

• 5" < Search Radius < 36"

 Old New

median 704 ms 79 ms

Conclusions
• Early results look promising

• Further significant gains would require

 progress in our database technology

 • In-memory databases? Plausible for

 2MASS, not for all of our busy catalogs.

We're Hiring!
https://jobs.caltech.edu/postings/5580

Conclusions
• This only looked at the latency of small

 cone searches.

• Optimizing complex queries that require

 a table scan requires things like

 distributed databases.

 • LSST's Qserv

 • CitusDB

• Optimizing concurrent access requires

 fleets of frontends and databases.

