
DALiuGE
Data-Activated (Flow) Graph Engine

Imaging SKA-Scale Data on Cloud and Supercomputer
Infrastructure using Drops and DALiuGE

Mark BOULTON, Ian COOPER, Richard DODSON, Markus DOLENSKY,
Dave PALLOT, Rodrigo TOBAR, Kevin VINSEN, Andreas WICENEC, Chen WU

International Centre for Radio Astronomy Research

Look out for me,
Kevin VINSEN

kevin.vinsen@icrar.org

The Astronomer starts by composing Logical Graph, which represent high-level data
processing capabilities, for example, “Image Visibility Data”. A completed logical graph
expresses pipeline processing logic with resource-independent dataflow constructs and
Pipeline Components. Astronomers build a logical graph by linking a set of selected pipeline
components, each of which denotes a computational task wrapped in an executable
container such as: a docker image, a binary executable, or a shell script. Each pipeline
component is also characterised by workload metrics measured by the Workload Analyser.

Next, DALiuGE translates a logical graph into a Physical Graph Template (PGT), which
defines all Drop “specifications” as stipulated by the logical graph but without creating
concrete Drops or allocating any physical resources. The translation from a logical graph to
PGT is automated and uses Hardware Capability information obtained from the Resource
Analyser.

Using the Hardware Availability from the Resource Analyser, DALiuGE instantiates each Drop
and associates it with an available resource unit. This transforms the physical graph template
into a Physical Graph, consisting of inter-connected Drops mapped onto a given set of
resources. DALiuGE deploys all the Drops onto these resources as per the location
information stated in the physical graph.

Control flow constructs form the “skeleton” of the logical graph, and determine the final structure
of the physical graph to be generated. DALiuGE currently supports the following flow constructs:
• Scatter indicates data parallelism. Constructs inside a Scatter construct represent a group of

components consuming a single data partition within the enclosing Scatter.
• Gather indicates data barriers. Constructs inside a Gather represent a group of components

consuming a sequence of data partitions as a whole.
• Group By indicates data resorting (e.g. corner turning in radio astronomy). The semantic is

analogous to the GROUP BY construct used in SQL statement for relational databases, but
applied to data Drops.

• Loop indicates iterations. Constructs inside a Loop represent a group of components and
data that will be repeatedly executed/produced for a fixed number of times. Each Loop
construct has a property named num_of_iterations that must be determined at logical graph
development time, and that determines the number of times the loop is “unrolled”.

The Physical Graph describes how a collection of inter-connected Drops will be
placed across multiple compute nodes to form a distributed execution plan — the
physical graph. The nodes of a physical graph are Drops representing either data
or applications. This establishes a set of reciprocal relationships between Drops:
• A data Drop is the input of an application Drop; on the other hand the

application is a consumer of the data Drop.
• Likewise, a data Drop can be a streaming input of an application Drop in which

case the application is seen as a streaming consumer from the data Drop’s point
of view.

• Finally, a data Drop can be the output of an application Drop, in which case the
application is the producer of the data Drop.

A physical graph running on
Tianhe-2
• 500 compute nodes,
• 66,473 drops in total,
• 61,268 drops completed

(green),
• 4,612 drops errors,
• 593 drops unfinished, due

to those upstream errors

A CHILES galaxy at ~1410 MHz

Better than linear scale out to 1,000,000 drops on Tianhe-2

