
I show a simple example of the application of Polycomp to the time series of the velocity vector of the ESA Planck

spacecraft. These can be obtained using the JPL's HORIZONS system (http://ssd. jpl .nasa.gov/?horizons). This kind

of dataset is useful to compute the amount of Doppler signal caused by the motion of the spacecraft with respect to

the Sun.

The input fi le is a 70  MB FITS file with one binary

table HDU containing four columns: the time and

the three cartesian components of the velocity,

sampled once every minute. I t contains ~2 mil l ion

rows, which corresponds to almost 4.5 years of

data, saved in a 69.9   MB FITS file.

I used the polynomial compression algorithm (see

the panel on the left) to compress the four

columns, Polycomp ran the compression several

times, varying each time either the degree of the

interpolating polynomial or the number of samples

in each chunk, and picking up the combination

which produced the best compression ratio. The

result was saved in a compressed 1 0.5 MB FITS

file, with a compression ratio equal to 6.6.

The plot on the right shows the result of the

optimization for the X component of the velocity

vector: the dot at (80, 4) is the best configuration.
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Libpolycomp (C library): https://github.com/ziotom78/l ibpolycomp [ascl :1 604.002]

Polycomp (Python bindings and stand-alone executable): https://github.com/ziotom78/polycomp

Compression of smooth data tables using Polycomp

Data compression is increasingly important in astrophysics, as the amount of data acquired by modern experiments often needs hundreds of terabytes for the storage of

raw data. Here I present a few usage cases of "polycomp", a C/Python l ibrary to compress smooth one-dimensional data whose error is either zero or negl igible. One of the

algorithms implemented by "polycomp" combines the advantages of polynomial least-squares fitting and the properties of the discrete Chebyshev transform. This algorithm

can lead to compression ratios larger than 1 0 in a number of real istic cases. I wil l show a few examples of datasets that can be easily compressed using this approach,

namely: (1 ) spacecraft attitude information, and (2) timelines of pointing information for a real istic al l -sky survey experiment.

Maurizio Tomasi (Università degl i Studi di Milano, I taly)

Polycomp in a nutshell Example #1 : spacecraft speed

Example #2: spacecraft pointing information

Polycomp is a Python program and a set of Python bindings to Libpolycomp, a C library,

to implement a number of compression algorithms useful for compressing one-

dimensional time series. Both Libpolycomp and Polycomp are available under a

permissive MIT l icense.

The C library implements a number of compression schemes, al l described in Tomasi

(201 6). Most of the compression algorithms are mainly meant to compress timelines

where the amount of noise is negl igible (e.g. , pointing information, flags, time

information…). Both the C and Python l ibraries compress data using memory buffers.

The Python program is able to save compressed data to files, using FITS files as

containers. The structure of these FITS files are ful ly documented.

Polynomial interpolation

The polynomial interpolation algorithm is a quite sophisticated lossy compression

scheme implemented by Polycomp. I t implements a mixture of least-squares fit and

Fourier transforms to achieve good compression ratios in a fairly large number of

situations. The algorithm works as fol lows:

1 . Spl it the sequence of samples in chunks of a given size;

2. Approximate the samples in each chunk with a polynomial of a given degree;

3. Compute the residuals of the approximation;

4. I f the residuals are above some threshold, approximate the residuals with a filtered

Chebyshev transform;

5. Save the polynomial coefficients and the Chebyshev transform.

A «filtered Chebyshev transform» is a Chebyshev transform where the smallest

coefficients are set to zero and not saved to disk. The number of zeroed coefficients is

chosen in order for the error not to be greater than a user-specified upper bound. The

plot below explains how the algorithm works:

Compression error

In order to measure the impact of the compression error, I calculated the inverse of the pixel condition number (Eq.

1 0 in Kurki-Suonio et al . , 2009). This measures the abil ity to reconstruct the polarization parameters for each pixel in

a sky map by means of one number in the range [0, 1 ] per pixel . I used a Healpix map (Górski et al . , 2005) with

NSIDE=1 024, containing roughly 1 07 pixels. I redid the calculation using as input each of the three sets of file above,

and I measured the discrepancies. Since the gzip compression is lossless, using the gzipped files instead of the

uncompressed ones resulted in no change. Using Polycomp, the inverse condition numbers had a mean absolute

error of ~1 0−8, with an upper l imit of 0.01 (0.002  ‰ of the number of pixels). Such errors are caused by the

polynomial compression and can be reduced by reducing the upper bound on the compression error.

Disk occupation and decompression speed

The set of 576 files was compressed using gzip and Polycomp itself. The size of each file set is shown in the plot on

the left, while the time required to read and decompress sequential ly them is shown on the right. Note how Polycomp

beats gzip both in terms of compression ratio and read+decompression time.

I produced a set of pointing information for an ideal spacecraft for CMB measurements, observing the sky through a

telescope and implementing polarization-sensitive detectors. I used the so-cal led «CORE-l ike» scanning strategy

provided as an example of the TOAST package (https://github.com/hpc4cmb/toast).

The pointing information was saved in 576 FITS files, with an overal l size of 1 02 GB. Each FITS file contained one

binary table HDU with the fol lowing columns: (1 ) time (double precision number), (2) latitude, (3) longitude, (4)

polarization angle, (5) sky signal , (6) Doppler signal , (7) noise signal , (8) overal l signal , sum of the sky, the Doppler

effect, and the noise, (9) flags. Al l the columns but the last one contain double-precision numbers; the «flags»

column contains 64-bit integer.

I used Polycomp to compress the time, latitude, longitude, and polarization columns using the «polynomial

compression» (see panel on the left) , the four columns containing the signal using 24-bit quantization, and the flags

using RLE compression. I searched for the optimal set of parameters for the polynomial compression on each of the

576 files, using as upper bound for the compression error 1   μs (time) and 1   arcsec (angles).

ADASS 201 6, Trieste (I taly)

The first step is to

spl it the dataset in

chunks. In this case, I

chose to use 1 5

samples per chunk.

Within each chunk,

the samples are

approximated with a

polynomial of some

given degree (the

same degree applies

to al l the chunks).

The discrepancy

between the samples

and the polynomial fit

are measured

against a user-

provided error

threshold (1 0‒6).

Since the samples in

the first chunk does

not satisfy the bound,

Polycomp computes

a filtered Chebyshev

transform of the

residuals.

Polycomp saves the

coefficients of the

interpolating

polynomials, as well

as the nonzero

Chebyshev

coefficients of the

residuals. For both

chunks, the residual

compression error is

less than the upper

bound (1 0‒6) , as

expected.




