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Abstract

The LAMOST DR1 survey contains about two million of spectra la-
belled by its pipeline as stellar objects of common spectral classes.
There is, however, a lot of spectra corrupted in some way by both
instrumental and processing artifacts, which may mimic spectral
properties of interesting celestial objects, namely emission lines of
Be stars and quasars.

We have tested several clustering methods as well as out-
liers analysis on a sample of one hundred thousand spectra using
Spark scripts running on Hadoop cluster consisting of twenty-four
sixteen-core nodes. This experiment was motivated by an attempt
to find rare objects with interesting spectra as outliers most dissim-
ilar from all common spectra.

The result of this time-consuming procedure is a list of several
hundred candidates where different artifacts are prominent, but
also tens of very interesting emission-line spectra requiring fur-
ther detailed examination. Many of them may be quasars or even
blazars as well as yet unknown Be-stars. It deserves mentioning
that most of the work benefitted considerably from technologies of
Virtual Observatory.

1 LAMOST Spectral Surveys

The LAMOST telescope (Cui et al.,, 2012) has been delivering one of cur-
rently largest mega-collections of spectra (similar to Sloan Digital Sky
Survey).  The sixteen LAMOST spectrographs are fed by 4000 fibres
(see Fig. 1) positioned by micro-motors. Its publicly accessible Data
Release 1, (see Luo et al, 2015)) contains altogether 2204696 spectra,
1944329 of them being classified by the LAMOST pipeline as stellar ones.

Fig. 1. LAMOST telescope and its focal plane with fibres moved by micro-motors

2 Emission Line Objects

There is a lot of objects in the Universe that may show interesting shapes of some
important spectral lines. Very interesting are objects presenting emission lines,
as are Be stars, cataclysmic variables or quasars, where a gaseous envelope in the
shape of a sphere or a disk is expected. The emission lines may present under
different physical conditions single peak, double peak with different ratios or
even complicated combined emission and absorption profiles.

The unique source of such spectra is the archive of spectra obtained with 700mm
camera of the coude spectrograph of the 2m Perek Telescope at Ondfejov obser-
vatory — part of the Astronomical Institute of the Czech Academy of Sciences.
The archive (named CCD700) contains about twenty thousand spectra of mainly
Be stars and other emission-line objects exposed in spectral range 62506700 A
with spectral resolving power about 13000. The examples of various emission
line profiles of H,, line taken from CCDZ700 archive are given on Fig. 2.
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Fig. 2. Examples of H, line profiles Be stars in Ondrejov CCD700 archive

3 Finding Outliers with Unsupervised Machine
Learning

Machine learning is the field of informatics, closely related to the advanced sta-
tistical inference, which tries to build models of data by learning from sample
inputs and make predictions based on such learned models. It is divided mainly
into supervised and unsupervised methods.

Unsupervised learning (unlike supervised one requiring the labels assigned to
part of data) tries to identify similar patterns (typically different clusters based
on some similarity metrics) in data automatically without the human interven-
tion. The outliers are entities which cannot be assigned to any of such cluster
(so they represent the single member clusters).

The yet unknown rare objects with strange features hidden in the spectral
archive, or even sources with yet undiscovered physical mechanism may be in
principle found using this method. In any case a lot of random instrumental
artifacts will be found as well as every one is unique and thus very rare. The ar-
tifacts caused by systematic errors of the same nature, which repeats very often,
may be collected by clustering as well.

4 LOF Method for Finding Outliers

The Local Outlier Factor method (LOF) introduced by Breunig et al. (2000) is
based on an idea to compare local density of an object to the local densities of
its neighbours. The local density is estimated by the typical distance ¢ at which
a point can be “reached” from its neighbors (see Fig. 3).

Fig. 3. Concept of the local density for the minimal number of required points equal to three. Point
A and the other red points are core points, because at least three points surrounding them are in an €
radius. Points B and C are not core points but are reachable from A (via other core points) and thus
belong to the cluster as well. Point N, the outlier, is more distant (typically a noise)

One of the key terms for LOF is the k-distance and reachability distance of k near-
est neighbours: for any &£ > 0 the k-distance of object p is the distance d(p, o)
between p and an object 0 € D such that:

e for at least k objects o’ € D \ p it holds that d(p, 0’) < d(p, 0);
e for at most k& — 1 objects o’ € D \ p it holds that d(p, o') < d(p, o).

It means the distance of the object p to the k-th nearest neighbor, but set of the k
nearest neighbor (/V;.(p)) includes all objects at this distance (it can contain more
than k objects). Using k-distance the reachability distance can be defined as

reach-distance;.(p, o) = max(k-distance(o), d(p, o)) (1)

The local reachability density of object p is defined as

> reach-distance;.(p, o)
OENk(p)

lT‘dk(p) = 1/ (2)
[Ny ()]
The local outlier factor of p is defined as
Irdy(o)
2 leZ(p)
LOF,(p) = =2 ©
[Ny (p)]

If the LOF is considerably larger than 1, the object is an outlier, if it is about 1,
the object is comparable with others.
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Fig. 4. Concept of reachability distance. reach-dist(p;,0) and reach-dist(ps,0), for k=4
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5 Input Spectra and their Pre-processing

The important part of data preparation before applying machine learning is the
data pre-processing. In our case the spectra have to be normalized to the contin-
uum (rectified), cut to the same wavelength range and re-binned into the same
grid of wavelength points. This gives us the number of so called Feature Vec-
tors (FV). As we wanted compare the some algorithm on both Ondiejov CCD700
and LAMOST spectra, we have cut the LAMOST ones to the similar wavelength
range (about 62506750 A) as those from CCD700. The result of the prepro-
cessing is the big CSV file with all spectral intensities interpolated to the same
wavelength grid. This (big) CSV is loaded on a computing cluster.

6 Massively parallelized processing using Spark

The Apache Spark is a set of libraries written in SCALA language, adapted
for calling from PYTHON, running on number of computing nodes in parallel.
We have used the academical cluster MetaCentrum consisting of twenty-four
sixteen-core nodes (the number of nodes assigned by the system is however un-
known, dependent on a availability and load of the cluster).

The data were distributed across all nodes by HDES filesystem of Hadoop in-
frastructure. The special Spark-based version of LOF method was developed by
K.S. (Shakurova, 2016) for this task. The experiments were run on all, almost
20000 Ondtejov CCD700 spectra and then on about 120000 spectra randomly
selected from those labelled as star in LAMOST DR1.

7 Resulting Outliers

As it is seen on Fig. 5, the LOF method is able to find in the CCD700 archive all
interesting cases of spectra like sharp emissions, asymmetric double peak emis-
sion or even noisy late type stars spectra. On the LAMOST data contaminated
by a lot of spoiled spectra, it can identity those with random instrumental ar-
tifacts (see Fig. 6). However some spurious ones may be still valuable as they
may represent interesting objects deserving further investigation. An example
on Fig. 7 shows the noisy spectrum classified by the LAMOST pipeline as late
type M7 class star, however clearly showing the combination of absorption and
emission profile seen typically in Be stars in both observed Oxygen Ol lines (see

Fig. 8).
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Fig. 7. LAMOST outlier classified as the M7 star
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Fig. 8. Detailed view of emission in Ol lines of the LAMOST outlier

8 Conclusions

Big spectral archives are good source of data suitable for machine learning of in-
teresting objects according to their characteristic spectral line shape. The outlier
finding methods as LOF may be successfully used for searching instrumental
artifacts but also the results need further detailed examination as they may hide
interesting scientific objects. The application of the method may benefit consid-
erably from massive parallelization using Spark on Hadoop cluster.
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