

Mining for Spectra – The Dortmund Spectrum Estimation Algorithm

Tim Ruhe¹, Tobias Voigt², Max Wornowizki², Mathis Börner¹, Wolfgang Rhode¹, Katharina Morik³

¹ Lehrstuhl Experimentelle Physik 5, Department of Physics, Technische Universität Dortmund, 44221 Dortmund ² Lehrstuhl Statistik in den Biowissenschaften, Department of Statistics, Technische Universität Dortmund, 44221 Dortmund ³ Lehrstuhl für Künstliche Intelligenz, Department of Computer Science, Technische Universität Dortmund, 44221 Dortmund

Inverse Problems in Gamma- and Neutrino Astronomy

Obtaining spectra of incident particles, such as gamma-rays or neutrinos is a common challenge in Air-Cherenkov and neutrino-astronomy.

The energy of the primaries cannot be accessed directly, but has to be inferred from other observables, e.g. energy losses of secondary particles. Mathematically, this corresponds to a Fredholm integral equation of the first kind:

The Dortmund Spectrum Estimation Algorithm - DSEA

- **1.** Discretize $f(x) \mapsto \vec{f}(x) = (f_1, \dots, f_m)$. (Initialize)
- **2. Train Model** A subset of *n* examples $(\underline{A}, W, L) = \{(\vec{a}, w, l)_1; ...; (\vec{a}, w, l)_n\}$ is used to train a model M(A, W, L). Each example consists of a label l, a weight w and h attributes $\vec{a} = (a_1, \dots, a_h)$. **3.** Apply Model The Model $M(\underline{A}, W, L)$ is applied to a set off \tilde{n} unlabeled examples $\underline{\tilde{A}} = (\vec{\tilde{a}}_1, ..., \vec{\tilde{a}}_{\tilde{n}})$ yielding a confidence $c_{i,i} = g(M(\underline{A}, W, L), \vec{\tilde{a}}_i)$ for the *i*-th example to belong to the *j*-th bin in $\vec{f}(x)$. **4.** Reconstruct Spectrum For the k-th iteration, the bin content $\hat{f}_{i,k}$ of the *j*-th bin is estimated as $\hat{f}_{i,k} = \sum_{i=1}^{\tilde{n}} c_{i,j}$. **5. Update weights** The example weights for the (k + 1)-th iteration are updated according to $w_{i,k+1} = \frac{f_{k,l_i}}{\tilde{n}}$. (Continue with Step 2)

Picture: IceCube Collaboratio

Picture: Jens Buß.

$$g(y) = \int_{a}^{b} A(E, y) f(E) dE$$

Several algorithms for the solution of this problem exist, which are, however, somewhat limited e.g. in the number of input variables, or in the sense, that information on individual events is lost.

The Dortmund Spectrum Estimation Algorithm (DSEA) aims at overcoming these limitations by using state of the art data mining techniques.

Toy Monte Carlo Simulation

0

C

erfo

CC

0

kept constant for every set of simulated events.

Agreement with Underlying Distribution

Agreement with the underlying pdf for different levels of smearing and different numbers of input events, evaluated using the Hellinger distance. Compared to a Random Forest regression, better agreement is obtained with DSEA, if the

Reconstructed spectra obtained with DSEA for three different levels of smearing. All reconstructions were carried out using 10 attributes and 100k examples. For all three levels of smearing the reconstructed spectra were found to agree with the underlying distribution of events within the uncertainties obtained from a tenfold bootstrap.

Lehrstuhl für Experimentelle Physik 5

Lehrstuhl Statistik in den

Biowissenschaften

Lehrstuhl für Künstliche Intelligenz, LS 8

