
Porting	the	LSST	Data	Management	Pipeline	Software	to	Python	3
Tim	Jenness	(LSST	Tucson) for	the	LSST	Data	Management	Team

Abstract The	LSST	data	management	science	pipelines	software	consists	of	more	than	
100,000	lines	of	Python	2	code.	LSST	operations	will	begin	after	support	for	Python	2	
has	been	dropped	by	the	Python	community	in	2020,	and	we	must	therefore	plan	to	
migrate	the	codebase	to	Python	3.	During	the	transition	period	we	must	also	support	
our	community	of	active	Python	2	users	and	this	complicates	the	porting	significantly.	
We	have	decided	to	use	the	Python	future package	as	the	basis	for	our	port	to	
enable	support	for	Python	2	and	Python	3	simultaneously,	whilst	developing	with	a	
mindset	more	suited	to	Python	3.	In	this	poster	we	report	on	the	current	status	of	the	
port	and	the	difficulties	that	have	been	encountered.

More	Information
LSST	DM	Python	3	Porting	Guide:	https://sqr-014.lsst.io
LSST	Data	Management	Overview:	arXiv:1512.07914
LSST	Design	Overview:	arXiv:0805.2366
LSST	Science	Book:	arXiv:0912.0201
LSST	Data	Products:	http://ls.st/LSE-163
DM	Applications	Design:	http://ls.st/LDM-151
Key	Numbers:	http://lsst.org/scientists/keynumbers

The	LSST	Software	Stack
The	Large	Synoptic	Survey	Telescope	will	take	about	15 TB	of	image	data	per	night,	amounting	to	0.5	exabytes of	
image	data	and	15	petabytes	of	catalog	data	after	ten	years	of	operation.	We	are	writing	a	suite	of	software	
packages	to	enable	these	data	products	to	be	created	with	sufficient	quality	and	performance	to	meet	the	
established	science	goals.	The	science	pipeline	software	enables	two	key	components	of	the	data	management	
system.	The	Alert	Production	pipelines	(also	known	as	Level	1)	process	the	data	from	the	telescope	and	publish	
alerts	to	the	community	within	60	seconds	of	data	acquisition.	The	Data	Release	Production	(Level	2)	pipelines	are	
responsible	for	the	annual	data	releases	which	reprocess	all	the	data	each	year	to	generate	the	best	possible	
catalogs.	Both	these	systems	are	integrated	with	the	Calibration	Products	pipeline	that	continuously	calculates	the	
best	calibrations.	The	software	also	provides	a	toolkit	for	user-supplied	code	that	can	be	used	to	efficiently	and	
effectively	analyze	LSST	data	as	part	of	Level	3 processing	or	their	own	Pipelines.	LSST	software	development	began	
in	2004	(Python	2.3)	and	still	has	a	lot	of	code	that	was	written	in	the	2.4	to	2.6	era.

Stack	Components
The	full	list	of	stack	packages	are	listed	to	the	right,	along	with	the	
current	porting	status.

daf The	Data	Access	Framework	is	responsible	for	mediating	between	
the	archive	resources	and	the	application	writer.	The	pipeline	code	has	a	
completely	abstract	view	of	file	I/O	and	only	has	to	know	how	to	deal	
with	data	objects	representing	fundamental	types	such	as	exposures	
and	tables.	Currently	FITS	is	the	internal	format	but	the	system	is	
designed	such	that	the	internal	format	could	be	changed	to	HDF5,	for	
example,	and	no	changes	would	have	to	be	made	to	the	science	
pipeline	code.	This	abstraction	of	the	files	from	the	code	protects	us	
against	shifts	in	format	preferences.
dax Data	access	libraries.
afw The	Astronomy	FrameWork provides	the	core	classes	for	
manipulating	images	and	catalogs,	including	detecting	sources	and	
world	coordinate	handling.
ip These	are	the	image	processing	classes,	including	packages	for	
instrument	signature	removal	and	image	differencing.
meas The	measurement	packages	include	code	for	determining	source	
properties	and	correcting	astrometry	and	photometry.
obs These	classes	provide	instrument-specific	knowledge	to	the	
software	system,	providing	information	to	the	data	access	framework	to	
teach	it	how	to	interpret	data	from	a	range	of	optical	cameras.	The	obs
packages	currently	support	data	from	DECam and	a	selection	of	
instruments	on	Subaru	and	CFHT.
pex Pipeline	execution	support.
pipe Pipeline	infrastructure	and	tasks.	A	task	is	the	name	for	a	core	
processing	component	that	can	be	chained	with	other	tasks	to	build	a	
pipeline.

Obtaining	the	Software
Source	code:	https://github.com/LSST
June	2016	release:	http://pipelines.lsst.io/releases/notes.html
Known	to	work	on	CentOS	6	and	7	&	OS	X	Yosemite	&	above.
Conda binary	distribution	for	Linux	and	OS	X.

Supporting	Python	3
A	key	requirement	for	this	initial	port	was	that	our	pipeline	code	that	is	used	by	external	
users	must	support	both	Python	2.7	and	Python	3.	The	Python	community	has	developed	
a	number	of	schemes	for	handling	this	and	we	looked	at	both	six (used	by	Astropy)	and	
future.	We	decided	on	future	because	the	resulting	code	looks	almost	exactly	like	
Python	3	code,	in	many	cases	the	code	can	run	on	Python	3	without	future	being	
installed.

• Clean	up	code	with	autopep8.	Important	to	remove	tabs	from	code	and	simplifies	lint	
checking	later	on.

• Run	stage	1	futurize to	modernize	the	code	to	Python	2.7	standard	(print	function,	
absolute	imports,	modern	exception	catching,	update	has_key() usage).

• Run	stage	2	futurize.	This	does	a	normal	2to3modernization	and	adds	
compatibility	imports	for	Python	2.	Fixups	include	conversion	of	map(filter(lambda…)
constructs	to	list	comprehensions.

• Handle	bytes/str interchange	by	adding	decode/encode calls	where	appropriate.	
Python	3	is	very	good	at	finding	inconsistencies.

• Once	everything	works	on	Python	3,	run	it	on	Python	2.	It	will	probably	have	issues.	
Iterate.

• Run	full	stack	integration	tests	with	Python	2	as	the	lower	level	libraries	are	ported.

Porting	Issues

The	porting	process	was	relatively	straightforward,	but	there	were	some	issues	that	
required	thought.

Lists:	Some	functions	used	to	return	lists	and	now	return	iterators	or	views.	Add	
explicit	list() constructors	when	needed.	Also,	use:	for i in mydict when	
looping	over	dictionary	keys	rather	than	for i in list(mydict.keys()).

Bytes	vs	Strings: Python	2	is	very	relaxed	about	bytes	and	strings.	Python	3	insists	on	
them	being	distinct.	Remember	to	decode	the	bytes	from	external	commands	and	to	
use	binary	in	pickle	files.	Enable	Unicode	support	in	SWIG	interfaces.

results = subprocess.check_output([“ls”]).decode()

Future	str:	The	future	package	brings	in	a	str object	that	emulates	a	Python	3	str.	
This	can	cause	unexpected	trouble	if	code	ever	checks	if	the	supplied	string	is	an	
instance	of	str.	We	have	imported	basestring to	handle	this	(an	alias	for	str in	
Python	3)	but	if	your	code	is	not	using	any	Unicode	features	it	is	probably	better	not	
to	use	the	future	implementation.

Long	integers:	Python	3	always	uses	long	integers	and	does	not	support	L syntax	for	
literals.	Our	usage	was	to	distinguish	32-bit	from	64-bit	integers	but	on	a	64-bit	
Python	this	is	no	longer	necessary.	Remove	long() and	no	longer	use	Python	
integer	type	to	select	C++	integer	type.

Metaclasses:	These	are	handled	fine	by	future	until	multiple	inheritance	is	employed	
with	each	parent	class	using	distinct	metaclasses.

if sys.version_info[0] >= 3:
class _PolicyMeta(type(collections.UserDict), type(yaml.YAMLObject)):

 pass

class _PolicyBase(with_metaclass(_PolicyMeta, collections.UserDict,
yaml.YAMLObject)):

 pass
else:

class _PolicyBase(collections.UserDict, yaml.YAMLObject):
 pass

Explicit	version	checking:	Reading	Python	2	pickle	files	in	Python	3	may	need	the	
encoding	argument	(not	supported	on	Python	2).	Any	test	that	is	disambiguating	
bytes	and	strings	returned	from	a	C++	interface	should	be	skipped	on	Python	2.

Why	support	Python	3?

1. The	official	statement	from	the	Python	developers	is	that	Python	2.7	support	will	be	dropped	in	2020.	This	is	
before	the	official	start	of	the	LSST	survey	and	we	do	not	want	to	commission	software	where	the	key	
executable	under-pinning	the	entire	system	will	soon	lose	support.

2. LSST	has	external	users	of	our	software	that	provide	early	beta	testing	services	and	we	do	not	want	to	actively	
impede	those	users	from	migrating	to	a	more	modern	Python.	

3. Astropy recently	declared	that	it	 would	stop	adding	new	features	to	Python	2-compatible	releases	in	2017	
(APE10),	joining	Ipython,	Sunpy,	and	matplotlib.	This	declaration	will	motivate	the	community,	and	
furthermore,	LSST	DM	recently	decided	to	integrate	Astropy into	our	pipelines	code.	

✅ afw ✅ meas_deblender
✅ base ✅ meas_extensions_ngmix
✅ cat ✅ meas_extensions_photometryKron
❌ ci_hsc ✅ meas_extensions_psfex
✅ coadd_chisquared ✅ meas_extensions_shapeHSM
✅ coadd_utils ✅ meas_extensions_simpleShape
✅ ctrl_events ❌ meas_modelfit
✅ ctrl_execute ✅ ndarray
✅ ctrl_orca ❌ obs_cfht
✅ ctrl_pool ❌ obs_decam
✅ ctrl_provenance ❌ obs_lsstSim
✅ ctrl_stats ✅ obs_monocam
✅ daf_base ❌ obs_sdss
✅ daf_butlerUtils ❌ obs_subaru
✅ daf_persistence ✅ obs_test

❌ datarel ✅ pex_config

❌ dax_dbserv ✅ pex_exceptions

❌ dax_imgserv ✅ pex_logging

❌ dax_metaserv ✅ pex_policy

❌ dax_webserv ✅ pipe_base

❌ dax_webservcommon ✅ pipe_drivers

✅ db ✅ pipe_supertask

✅ display_ds9 ✅ pipe_tasks

✅ geom ❌ Qserv

✅ Ip_diffim ❌ scisql

✅ Ip_isr ✅ shapelet

✅ log ✅ skymap

✅ meas_algorithms ✅ skypix

✅ meas_astrom ✅ sphgeom

✅ meas_base ✅ utils

Current	Status
As	of	October	2016	approximately	45	packages	(see	table)	have	been	ported	to	
Python	3	(not including	third-party	packages	or	packages	without	any	Python	code).	
Eight	science	pipeline	packages	remain	to	be	ported.	The	aim	is	for	the	port	to	be	
completed	by	the	end	of	the	year	and	for	the	data	access	libraries	and	Qserv to	be	
done	shortly	thereafter.

