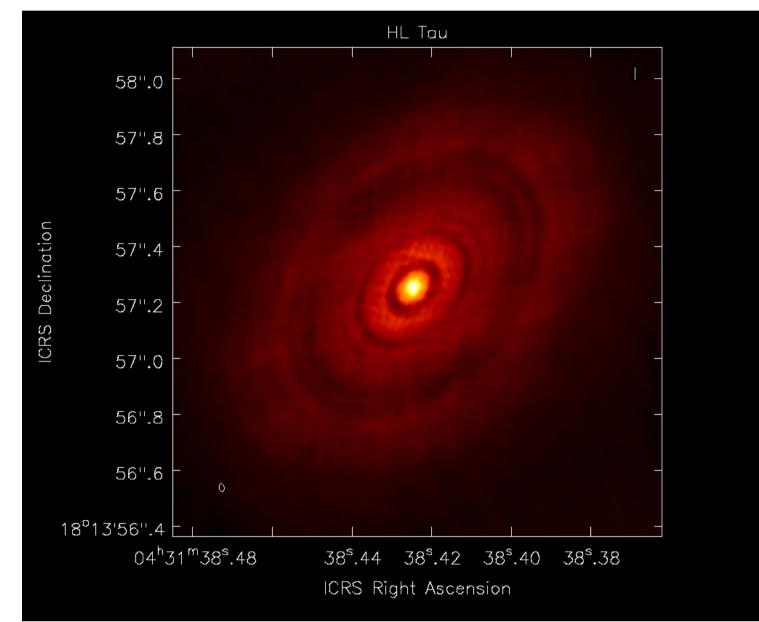


www.stfc.ac.uk

The ALMA Science Pipeline


V. C. Geers, S. Williams (UK ATC), D. Muders, F. Wyrowski (MPIfR), G. Kosugi, T. Nakazato, K. Sugimoto (NAOJ), L. Davis, C. A. Hales, B. Kent, J. Kern (NRAO)

Overview

The Atacama Large Millimeter Array (ALMA) is a radio interferometer composed of 66 antennas located on the Chajnantor plateau at 5 km altitude in northern Chile. With baselines of up to 16 km, ALMA provides unprecedented spatial resolution and sensitivity in the mm/submm wavelength range to study star and galaxy formation. The ALMA project intends to reach a broad astronomical community. An automatic reduction pipeline is required to deliver science quality data products to radio expert & non-expert astronomers.

Pipeline Design

The ALMA Pipeline^[1,2,3] is part of the CASA (Common Astronomy Software Applications) data reduction package^[4], which consists of a set of C++ tools with an iPython interface, presenting a set of data reduction tasks. The pipeline tasks are designed to be modular, each can be run via task interface or automated python script. CASA includes post-processing tools for data analysis.

HL Tau Science Verification Data calibrated and imaged by the Cycle 4 Pipeline

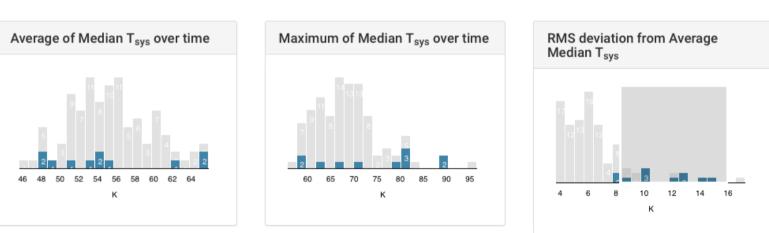
Current Status

As of Cycle 4, Oct 2016, ALMA Pipeline (in CASA 4.7) provides for interformative and single dish.

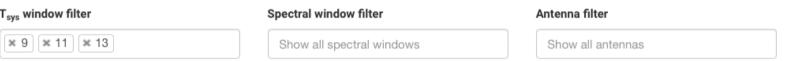
Heuristics

The pipeline heuristics capture the expert knowledge needed to process radio interferometry and single dish data and to perform the zero spacing combination. The algorithms and recipes are being iterated through the Pipeline Working Group.

12				
لې ا	A Home By Topic	By Task		1234.5.67890.S
Warn	ings and Errors			
Stage	Task	Туре	Message	
4	hif_rawflagchans	Warning	uidA002_X5784d5_X32d.ms iteration 1 raised 54 flagging commands	
7	hifa_tsysflag	Warning	flag edgechans - uidA002_X5784d5_X32d.ms iteration 1 raised 9 flagging commands	
7	hifa_tsysflag	Warning	flag fieldshape - uidA002_X5784d5_X32d.ms iteration 1 raised 2 flagging commands	
7	hifa_tsysflag	Warning	flag birdies - uidA002_X5784d5_X32d.ms iteration 1 raised 30 flagging commands	
8	hifa_antpos	Warning	Antenna position offsets file does not exist	
11	hif_gainflag	Warning	flag nrmsdeviant - uidA002_X5784d5_X32d.ms iteration 1 raised 2 flagging commands	
14	hifa_spwphaseup	QA Warning	There are 3 mapped science spws for uidA002_X5784d5_X32d.ms	
14	hifa_spwphaseup	Warning	No SNR estimate - Forcing combined spw map for uidA002_X5784d5_X32d.ms	
Tack	by Topio			
IdSK	s by Topic			

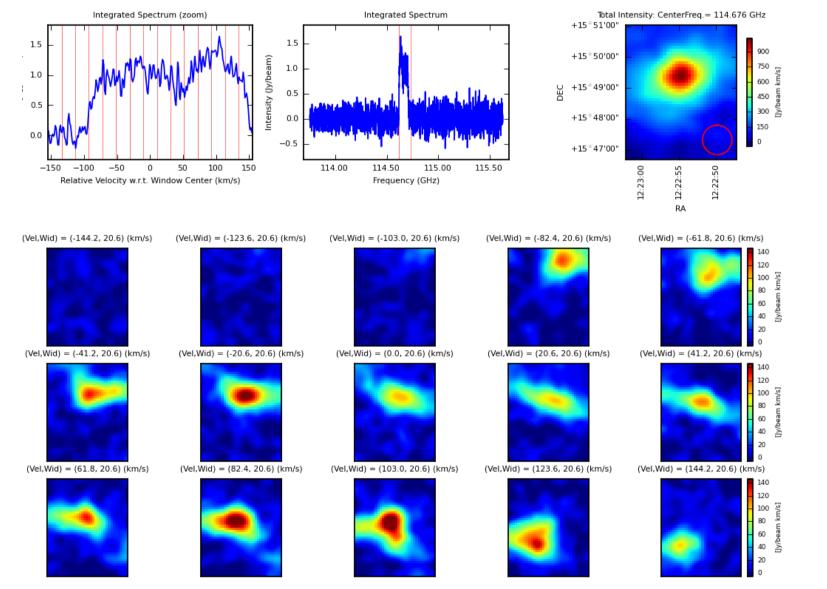

Web Log

The pipeline processing results are presented as a hierarchical set of web pages facilitating navigation from high-level summaries down to detail pages illustrating the data structure and contents, and as well as the calibration and imaging steps.


T_{sys} plots for uid___A002_X5784d5_X32d.ms

Clip histogram range to match data range

T_{sys} spw 13



BACK

DV16 DV16 T _{sys} spw 9 T _{sys} spw 11 Science spw Science spw
Science spw Science spw 17 19

- 4.7) provides for interferometry and single-dish:
- calibration & flagging
- images of the calibrator sources
- continuum / spectral line images of science targets
 Recent imaging improvements:
- continuum frequency range finding
- dynamic range based clean thresholds
 Plans for Cycle 5/6 improvements include autoboxing in clean-mask selection, fine-tuning clean threshold heuristic, improved QA scoring, improved flagging, and linear polarimetry.

 1
 8.30
 8.30
 8.30
 8.30
 8.30
 8.30
 12.20
 12.90
 13.30
 8.30
 9.70
 13.30
 14.30
 9.70
 9.70
 11.90
 15.10
 19.00
 12.30
 9.70
 14.00
 1

 12
 31.25
 31.25
 31.25
 31.25
 31.25
 31.25
 31.25
 31.25
 32.30
 35.00
 35.75
 32.30
 32.90
 33.95
 36.35
 39.27
 34.25
 32.30
 34.25
 36.80
 35.55
 32.30
 32.90
 33.95
 36.35
 39.27
 34.25
 32.30
 34.25
 36.80
 35.55
 32.30
 32.90
 33.95
 36.35
 39.27
 34.25
 32.30
 34.25
 36.80
 35.55
 32.30
 32.90
 33.95
 36.35
 39.27
 34.25
 32.30
 34.25
 36.80
 35.55
 32.30
 32.90
 33.95
 36.35
 39.27
 34.25
 32.30
 34.25
 36.80
 35.55
 35.30
 33.95
 36.35
 39.27
 34.25
 32.30
 34.25
 36.80
 35.55
 35.35
 36.35
 36

5. hif refant: Select reference ante

Flagging Summaries

uid A002 X5784d5 X32d.ms

By-Topic summary of warnings, scores & flagging

Quality Scores

The data processing and products are evaluated with Quality Assessment scores ranging from 0 (awful) to 1 (perfect), based on metrics such as RMS, S/N ratios, etc. Each reduction step, each topic (calibration, flagging, imaging) and the overall run are tagged with a score. Low scores point to problem areas to be inspected.

Histogram filtered plots

Book Keeping

To handle the complex observing mode setups, the pipeline keeps track of the metadata and the intermediate processing results, through special context, data domain, and results objects. A calibration library keeps track of all calibrations generated throughout the pipeline run and how to apply them to the data.

Pipeline Use

The CASA Pipeline is designed to take advantage of a range of processing capabilities, from high end workstation to small clusters, with various (parallelized) pipeline tasks able to benefit from high system memory, high bandwidth file I/O, and multiple cores. This provides the flexibility to support different use cases and processing environments:

At Joint ALMA Observatory

At the JAO, 83% of ALMA observing projects are processed with the pipeline, significantly reducing the manual workload on the science QA verification team.

On Amazon Web Services

CASA and the ALMA Pipeline can be run on Amazon Web Services, visit our web portal at: <u>https://casa.nrao.edu/casa_aws_introduction.shtml</u> for info on:

Single-dish channel maps

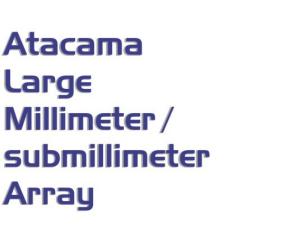
Pipeline Team

The ALMA pipeline team consists of a distributed group of developers from all ALMA partners, a working group to define requirements and goals, and a large group of testers at the ALMA Regional Centers (ARCs) and the Joint ALMA Observatory.

At home institutes

PIs receive a data package produced by JAO with assistance, verification, and delivery^[5,6] by their local ARC. The package contains the processing results ready for analysis, and a script to re-run the pipeline with desired modifications.

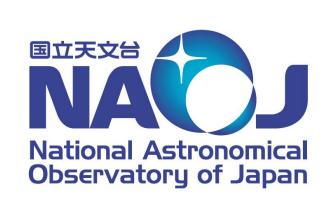
- how to get started with pre-made Amazon
 Machine Images for specific CASA releases
- AWS instances & storage & monitoring
- recommended AWS configurations w.r.t. balancing RAM/CPU needs against costs


References[1] http://adsabs.harvard.edu/abs/2012ASPC..461..185D[2] http://adsabs.harvard.edu/abs/2014ASPC..485..383M[3] http://adsabs.harvard.edu/abs/2015ASPC..499..3555

[4] <u>http://adsabs.harvard.edu/abs/2007ASPC..376..127M</u>
[5] <u>http://adsabs.harvard.edu/abs/2014SPIE.9152E..0JP</u>
[6] <u>http://adsabs.harvard.edu/abs/2014SPIE.9149E..0ZS</u>

Visit <u>casa.nrao.edu</u>

for more information on ALMA Pipeline and CASA. Thank you to Todd Hunter (NRAO) for feedback on this poster.



Max-Planck-Institut für Radioastronomie

