
Ariadne: a system for evaluating AMAZED’s efficiency
R. C. Borges, S. Arnouts, P-Y. Chabaud, F. Fauchier, M. Gray, S. Jamal, V. Le Brun, O. Le Fèvre, A. Schmitt, C. Surace, D. Vibert & C. Vidal

Aix Marseille Univ, CNRS, LAM, Laboratoire d’Astrophysique de Marseille, Marseille, France

Abstract

Here we present Ariadne, an automation subsystem for AMAZED, whose primary
task is to compute AMAZED’s redshift estimation efficiency. Secondarily, it serves
as structured repository of processed reductions and metadata, allowing users
to find existing results specifying abstract criteria (such as astronomical object
parameter intervals), and remotely execute software to generate results not yet in
the repository.

Introduction

LAM (Laboratoire d’Astrophysique de Marseille) is at the forefront of development
of next generation spectrographic instruments, such as PFS (Prime Focus Spectro-
graph - see Tamura ) and Euclid (see Laurejis ). For both projects, LAM is
responsible for delivering a pipeline that estimates redshift values.
AMAZED (Algorithms for Massive Automatic Z Evaluation and Determination) is a
project developed at LAM to deliver pipelines for PFS and Euclid (see Schmitt ).
AMAZED’s efficiency is defined for spectra which have reference redshift values.

ZError = |ZAMAZED − ZReference |/(+ ZReference)
EfficiencyPFS = Count(ZError < −)

Efficiency depends on AMAZED’s version and configuration; also on the reference
spectra. These conditions change often during development, and will change
during survey operations.
Ariadne is LAM’s project to automate usage of AMAZED.

Objectives

Figure: AMAZED efficiency table.

Since each table depends on several
factors, assessing AMAZED’s global
efficiency suffers from an excessive
number of test cases. Ariadne handles
the repetitive tasks and does the
bookeeping, so users only deal with
efficiency in an abstract manner.

The principal objective is to produce
“efficiency tables” such as the one
displayed on figure .
Each table is linked to a specific version
and configuration of AMAZED, and to a
set of reference spectra.
These tables illustrate the performance
of AMAZED with regards to intervals of
its input parameters. This allows to
verify if AMAZED performs within its
intended precision, and suggests the
parameter intervals where the pipeline
is failing.

Figure: The explosive growth of AMAZED cases.

Secondarily, Ariadne was built modularly, and its components can be reused to
mock telescope operations, and in this fashion we can test AMAZED’s performance
under conditions closer to its intended usage.

Technologies

Ariadne is developed through Agile practices and designed to be highly modular. It
is written in Python . Some of Ariadne’s modules use specific packages:
IPépin is based on ZeroMQ;
IMinos database is based on SQLAlchemy (see Figure );
IAriadne uses PyQt.
Development is done in a GitLab instance at LAM, with continuous integration with
our Jenkins instance. Unit tests use unittest and nose.

Architecture

Figure: The modules that comprise Ariadne.

Ariadne’s architecture
is that of a set of
daemons for the
backend system. The
frontend have Admin
and User’s GUIs which
are multithreaded
applications. We will
deploy also a web
client.

Design

Ariadne’s database stores metadata about AMAZED, ProcAOS and the samples
they process. Automation is built as logic around the database.

Figure:  - Ariadne’s database tables.

Figure: UML diagram of the classes in Pepin.API.

Pépin is built on top of ZeroMQ’s
Majordomo pattern. It has an API
subpackage with Majordomo, Vassal
and Peasant classes. Vassals provide
services, while Peasants consume them.
Daemons inherit from Linux process,
while volatile processes are
Linux threads. As long as clients send
well-formed requests, they can use the
services.

Conclusions

Ariadne currently allows a user to abstract many details of the complex task
of producing AMAZED’s efficiency tables. This is a crucial element for allowing
developers to conveniently assess impacts of new code in AMAZED.
The modular design of Ariadne amde easy to be refactor Pépin into an independent
project.
The administrative GUI allows to manage a large data collection with automated
tools.

Figure:  - Ariadne’s administrative GUI.

Future research

The two projects we intend to attack next are Tauros and WebZ, the first being
an automation module for Ariadne that will be responsible for discovering tasks
that should be executed in order to produce up-to-date efficiency tables, given a
template.
The WebZ project is a user-friendly interface to Ariadne’s services, which will elimi-
nate the need for installing client GUI software on a user’s machine.

References

Schmitt, A. et al, AMAZED: Algorithm for Massive Automated Z Evaluation and Determination, ASP
Conf. Ser., .
Tamura, N. et al, Prime Focus Spectrograph (PFS) for the Subaru telescope: overview, recent
progress, and future perspectives, Proc. SPIE , .
Laureijs, R. et al, The Euclid Mission: Cosmology Data Processing and Much More, ASP Conf. Ser.,
vol. , .

Acknowledgements

This project would not have been possible without grants from CNRS, connected to the PFS interna-
tional collaboration.

Created with LATEXbeamerposter http://www-i.informatik.rwth-aachen.de/˜dreuw/latexbeamerposter.php

http://www-i6.informatik.rwth-aachen.de/~dreuw/latexbeamerposter.php

