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• Node configuration: 12 D12 worker 
nodes. (28 GB RAM, 8 cores, 200 GB 
SSD)

• Storage: Azure blob storage acessed via 
HDFS interface. No data locality

Technologies used

We used ~900 GB of Stripe82 r-band data with tiles arranged 
as shown on the graph
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Regions overlap to enable correct processing of 
border objects

Overlap width is larger than the largest object we 
expect to encounter

Image belongs to tile if its center is contained 
within the tile
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Computational strategy

Input 
images

SWarp: subtract 
background and 
project onto tiles

Projected 
images

Projected images 
grouped by tile

SWarp: coadd images 
for each tile

Map phase Shuffle phase Reduce phase

Distributed image coaddition with MapReduce

Both frameworks have the following features:
• Fault-tolerance
• Ability to exploit data locality by moving 

computations to data
• Parallel I/O using Hadoop Distributed File 

System (HDFS)
• Supported by major cloud platforms

On top of that, Spark offers:
• Support for in-memory computations
• Flexible API that is better suited to 

chaining operations

We used Java and Python for our Hadoop 
and Spark image coaddition implementations 
respectively.

VS

We used SWarp by Emmanuel Bertin 
to do image reprojection, background 
subtraction and coaddition.
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Evaluation
Execution time

% of user CPU time
Hadoop

Spark

Aggregate time by stage

Spark

!"%�

!�%�

 �%�

 !%�

��%�

� %�

��%�

��%�

�%� ��%� ��%�  �%� "�%� ���%�

�������

��"����

�������

" "����

���	������������
	�
����	�

���
	��	�������
����������

Disk space requirements
There may be multiple projections for each input 
image, so lots of disk space is needed for 
intermediate output

• Map output to be read by reduce tasks
• Files created by SWarp (deleted after it finishes)

We had to split jobs in half for bigger experiments 
(868 GB)

Framework overhead
We measured overhead by comparing total time across 
all tasks to time spent executing user code.
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Conclusions
We applied Hadoop and Spark to image coaddition and compared the performance of the two frameworks. From our 
research, we conclude that Spark is faster and has less overhead. Spark also has more flexible API and easier configuration. 
The downside of Spark is that it doesn't let the user specify different executor configurations for different execution stages 
because the stages are defined by Spark at runtime. This can make configuring executors harder when dealing with 
heterogeneous tasks, as in our case where projection tasks consume more CPU time and coaddition tasks consume more 
memory.

There is need for computing solutions that are capable of processing large amounts of data produced by modern sky surveys and 
can span multiple processing steps. In this work, we explore the use of big data analytics technologies deployed in the cloud for 
processing of astronomical data. We have applied Hadoop and Spark to the task of co-adding a large volume of astronomical 
images. We compared the overhead presented by these frameworks and execution time on different workloads. From our 
experiments, we conclude that
a)Performance of both frameworks is generally on par
b)Spark is faster on the workloads we used for testing. On the other hand, its configuration is less flexible than that of Hadoop, 

which can lead to performance problems. 
c)The approach to distributed image coaddition that we used requires disk space for storing intermediate output (approximately 2 

times the input size). Thus, it might be necessary to split large workloads into several jobs.

Cluster configuration

Hadoop
• Hadoop uses a dedicated container for each 

task
• Can use different container configurations for 

different kinds of tasks
• 3 GB Mapper containers
• 4 GB Reducer containers

Spark
• Spark starts a predefined number of 

executors and distributes tasks between 
them

• Executor is re-used for multiple tasks — can't 
use different configurations for different kinds 
of tasks

• 4736 MiB container for each executor
• 60 executors
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