
Architecture of processing and analysis system for big astronomical data
I.Yu.Kolosov, S.V.Gerasimov, A.V.Meshcheryakov Faculty of Computational Mathematics and Cybernetics of Lomonosov Moscow State University, Moscow, Russia

• Node configuration: 12 D12 worker
nodes. (28 GB RAM, 8 cores, 200 GB
SSD)

• Storage: Azure blob storage acessed via
HDFS interface. No data locality

Technologies used

We used ~900 GB of Stripe82 r-band data with tiles arranged
as shown on the graph

Inner region

Outer region
(frame)

Tile area of interest with rectangular regions

Regions overlap to enable correct processing of
border objects

Overlap width is larger than the largest object we
expect to encounter

Image belongs to tile if its center is contained
within the tile

0.5º

0.1º

Computational strategy

Input
images

SWarp: subtract
background and
project onto tiles

Projected
images

Projected images
grouped by tile

SWarp: coadd images
for each tile

Map phase Shuffle phase Reduce phase

Distributed image coaddition with MapReduce

Both frameworks have the following features:
• Fault-tolerance
• Ability to exploit data locality by moving

computations to data
• Parallel I/O using Hadoop Distributed File

System (HDFS)
• Supported by major cloud platforms

On top of that, Spark offers:
• Support for in-memory computations
• Flexible API that is better suited to

chaining operations

We used Java and Python for our Hadoop
and Spark image coaddition implementations
respectively.

VS

We used SWarp by Emmanuel Bertin
to do image reprojection, background
subtraction and coaddition.

This work is supported by Russian Foundation for Basic Research grants 14-22-03111-ofi-m and 14-22-03111-ofi-m. We also
thank Microsoft Azure for Research for providing us with computing resources.

Acknowledgements

Evaluation
Execution time

% of user CPU time
Hadoop

Spark

Aggregate time by stage

Spark

!"%�

!�%�

 �%�

 !%�

��%�

� %�

��%�

��%�

�%� ��%� ��%� �%� "�%� ���%�

�������

��"����

�������

" "����

���	������������
	�
����	�

���
	��	�������
����������

Disk space requirements
There may be multiple projections for each input
image, so lots of disk space is needed for
intermediate output

• Map output to be read by reduce tasks
• Files created by SWarp (deleted after it finishes)

We had to split jobs in half for bigger experiments
(868 GB)

Framework overhead
We measured overhead by comparing total time across
all tasks to time spent executing user code.

���

����

����

����

����

����

������� ������� ������� �������

�
����

���		
�

Hadoop

����

����

����

����

����

����

����

����

��� ���� ���� ���� ���� �����

�������

�������

�������

�������

���

����
�

�
	��
�

Conclusions
We applied Hadoop and Spark to image coaddition and compared the performance of the two frameworks. From our
research, we conclude that Spark is faster and has less overhead. Spark also has more flexible API and easier configuration.
The downside of Spark is that it doesn't let the user specify different executor configurations for different execution stages
because the stages are defined by Spark at runtime. This can make configuring executors harder when dealing with
heterogeneous tasks, as in our case where projection tasks consume more CPU time and coaddition tasks consume more
memory.

There is need for computing solutions that are capable of processing large amounts of data produced by modern sky surveys and
can span multiple processing steps. In this work, we explore the use of big data analytics technologies deployed in the cloud for
processing of astronomical data. We have applied Hadoop and Spark to the task of co-adding a large volume of astronomical
images. We compared the overhead presented by these frameworks and execution time on different workloads. From our
experiments, we conclude that
a)Performance of both frameworks is generally on par
b)Spark is faster on the workloads we used for testing. On the other hand, its configuration is less flexible than that of Hadoop,

which can lead to performance problems.
c)The approach to distributed image coaddition that we used requires disk space for storing intermediate output (approximately 2

times the input size). Thus, it might be necessary to split large workloads into several jobs.

Cluster configuration

Hadoop
• Hadoop uses a dedicated container for each

task
• Can use different container configurations for

different kinds of tasks
• 3 GB Mapper containers
• 4 GB Reducer containers

Spark
• Spark starts a predefined number of

executors and distributes tasks between
them

• Executor is re-used for multiple tasks — can't
use different configurations for different kinds
of tasks

• 4736 MiB container for each executor
• 60 executors

CMC MSU

